HCL :Qptimizing
Android Performance in Virtual
Environments

2
e) Engineering _
experiences

Table of Contents

Objective 3
Android Overview 3
Android Emulator or Android in virtual machine 3
Graphics Performance Optimizations 5
Multimedia Performance Optimizations 9
/0 Performance Optimizations 11
Network Performance Optimizations 11
Suggestions and Recommendations 12
Benchmarking Tools 12
Author Info 14

© 2013, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

HCL's capability in Android Performance Optimization | 3

Objective

Though it is known that over a period of time Android as an operating system has been
continuously maturing, in terms of meeting basic performance criteria, it is expected to perform as
well as its competitors especially the i0S. The performance levels - vary from system to system and
are dependent on a number of factors like the OS version, hardware components, CPU, GPU,
memory etc. Apart from these limiting factors, there are some provisions available in the system
which lets you improve graphics, /0 and multimedia performance of production ready Android
systems. Though most of the performance improvements suggested in this paper have been tested
while running Android in virtualized environment with focus on future products, but they should be
applicable on systems running Android natively.

Android Overview

Android is an OS based on Linux and has been designed primarily for mobile devices but it is also
making its presence felt in various consumer products. Android was unveiled in 2007 along with the
founding of the OHA with HTC Dream as first publicly available smartphone on Oct 2008.

The Ul of Android is based on direct manipulation, using touch inputs that loosely correspond to
real-world actions, like swiping, tapping, pinching and reverse pinching to manipulate on-screen
objects. Internal hardware such as accelerometers, gyroscopes and proximity sensors are used by
some applications to respond to additional user actions. Android allows users to customize their
home screens with shortcuts to applications and widgets.

Android's source code is released by Google under Apache License which allows the software to be
freely modified and distributed. Most Android devices ship with a combination of open source and
proprietary software. Android is popular with technology companies who require a ready-made,
low-cost and customizable operating system for high tech devices.Despite being primarily designed
for phones and tablets, it also has been used in TVs, Game consoles, Digicam & other CE products.
It's open nature has encouraged use of source code as a foundation for community-driven projects,
which adds new features for advanced users or bring Android to devices which were officially
released running other operating systemes.

Android Emulator or Android in virtual machine

KVM, the Linux Kernel-based Virtual Machine, is a virtualization solution for Linux designed to be
tightly integrated with upstream kernel development.

gemu-kvm provides the basic user interface for launching and controlling VMs, and provides the
main framework for running VMs. gemu-kvm handles essentially all hardware emulation { when the
emulated machine performs an IO instruction (such as an operation on x86 |0 ports), the kerne|
module returns to userspace, where gemu-kvm emulates the operation and then makes a ioctl to
resume execution.,

i,

© 2013, HCL Technologies. Reproduction Prohibited. This document Is protected under Copyright by the Author, all rights reserved.

HCL's capability in Android Performance Optimization | 4

With the help of gemu-kvm Android can be run in a virtual machine and that's what we have done.

The Android SDK includes a virtual mobile device emulator. The emulator lets you prototype,
develop and test Android applications without using a physical device.

The Android emulator mimics all of the hardware and software features of a typical mobile device.
It provides a variety of navigation and control keys, which you can "press" using your mouse or
keyboard to generate events for your application. It also provides a screen in which your
application is displayed, together with any other active Android applications.

Performance Bottlenecks

W Problem Area | : Graphics

The major area in graphics where performance is bottlenecks were faced are

Draw Calls & Indexed Draw Calls:
Draw calls tend to be an expensive operation in the world of 3D graphics,it might be possible
that you're making too many individual calls per frame and hence results in slow rendering.

Vertex Count & Indexed Vertex Count:

It might be possible that number of vertices you're pumping through is very large and hence it results
in reduced performance of 2D.

Buffer Creations:

Depending on your application, buffer creations should occur in the setup phase, as they tend to be a
slow operation, If you find that you're creating buffers at run-time it hence results in reduced
performance in 3D.

Error Gets:

It might be possible that glGetError gets called every time you draw. Hence, it decreases performance
drastically.

TA (Tile Accelerator) Load and USSE (Universal Scalable Shader Engine) Vertex Load:

It might be possible that if a graphics scene is too complex, the time that TA is being used and the
percentage of time the shader engine is processing vertex instructions becomes critical. Ideally these
loads should be balanced for best performance.

TSP Load, Texture Unit Load and USSE Pixel Load:

It might be possible that if texture types are not optimized and design of fragment shaders is too
complex, then the percentage time that the texture shading processor and texture units are busy and
the time the shader units are processing pixel instructions becomes critical.

& Problem Area Il : Multimedia

When running android virtually, multimedia performance might prove to be a major bottleneck.

i,

© 2013, HCL Technologies. Reproduction Prohibited. This document Is protected under Copyright by the Author, all rights reserved.

ICL's capability in Android Performance Optimization | 5

% Problem Arealll : I/0

It might be possible that your app’s performance is being affected by I/0 operations. Hence, in that
case the butter smooth animations effect will not be there.

‘W Problem Area IV : Network

It might be possible that your app’s performance is being affected by network operations due to which
the app takes a long time to respond and therefore the user experience is affected.

W Problem AreaV : Memory

This is a major bottleneck for the system. It might be possible that your app’s memory usage may

exceed the available system memory and hence it results in the app leaking memory. So, in that case
performance issues are related to lack of available system memory.

Graphics Performance Optimizations

Graphics stack is a complex software/hardware structure that is only as strong as its weakest link.
Performance bottlenecks can arise from any inconsistencies between components in the stack, and

It is often very difficult to identify and correct these problems without domain-specific expertise in
graphics performance optimization.

We have made changes in the software algorithm to optimize the graphics performance as shown
below :

Different tools used for analysis

v’ GLTrace
v OProfile
v/ DDMS and adb logcat

Suggestion | : Hardware Composition

Hardware Composer defines an abstraction layer between the Android compositor Surface Flinger and
SOC display subsystems. Surface Flinger can delegate certain composition work to the hardware
composer to offload work from the OpenGL and the GPU.

It was originally introduced to provide SOC vendors with the ability to take advantage of:

v/ Additional overlay planes
v’ 2D Blitters

It abstracts things like overlays and 2D blitters and helps offload some things that would normally be
done with OpenGL. This makes compositing faster than having SurfaceFlinger do all the work.

Major Improvements:

v/ Multi Display Support
v/ Clone/Extended Mode Support

i,

© 2013, HCL Technologies. Reproduction Prohibited. This document Is protected under Copyright by the Author, all rights reserved.

HCL's capability in Android Performance Optimization | 6

s S S T T O O O O T S S S S S G AR A AR A A G A A A A A A A . . e A e e s S S s S T T T T O O O T S S S S s s A AR AR A e G

Image Stream Producers

NOK | OpenGLES

) -F-——_F1

Bufter Data

e B B E T - R e e e i e e I e i . i SR e N S SN S N S S R R R NN NN, S I IR B A . o L L e - e - T R

Surtace lexture (frameworks/native/hbs/gul

SurfaceTextureClient.cpp E3 4 ISurfaceTexture.cpp

e G . . R G Sk R G . | e . e R e S S G . . WG W S S S T G

wWindow Metagata

— — e Ry R R R e R — T e . A . R A e e e e e e e e e s G G m mm Ea S S S S Sy

- Wingow posttioning, orientation, user ' Image Stream Consumers
input and tocus, etc '

WindowManager | SurfaceFlinger

e G i G S e Al A el W i A - - O T T W O T W T T T s e e e S e e e e s R .

O e e e e e e e e e e e A e e e e e e e e e e O e e e e e e e e e e e e e e e e e A W s

The GFX throughput of 2.2 GB/s safely accommodates user experience:

laver

wallpaper
widgets
status bar

Cursor

GB/s

h d

A 1280 .. 6881280 | 165150720 | 206438400 | 412876800

o 1280 .. 10321920 | 247726080 | 309657600 | 619315200
Status bar [FPER 245760 5898240 7372800 14745600

Cursor 7392 177408 221760 443520
---. 17448960 | 418775040 | 523468800 | 1046937600
---. 0017449 | 041877504 | 05234688 | 1.0469376

Layer w op szex1 size x 24 size x 30 size x 60

GB/s

W h depth op size x 1 size x 24 size x 30 size x 60

1000 2 |15360000 368640000 160800000 321600000
1920 1000 3040000 552960000 591200000 1382400000

1920 80 2 . 514400 14745600 18432000 6864000

64 |64 4 0B H915 1179648 1474560 949120
T Bo014400 936343600 1170432000 340864000

0.039014 0.9363456 1.170432 340864

1920

© 2013, HCL Technologies. Reproduction Prohibited. This document Is protected under Copyright by the Author, all rights reserved.

ICL's capability in Android Performance Optimization | 7

Suggestion Il : Write Combining for Graphics/Display

The support for Write Combining (WC) enabled Display memory in Platform display driver increases the
graphics performance.

The WC memory improves the processor write performance by combining the individual writes that a
processor may make to a particular memory region (like a video controllers frame buffer) into a burst
write containing many aggregated individual writes. It is easy to see the performance advantages of WC
when for example we change a processor that writes 32 pixels to a frame buffer via 32 individual bus
transactions into a processor which writes all 32 pixels at the same time with little to no incremental
transaction overhead.

Suggestion Ill : Enable triple buffering

Triple buffering provides speed improvement. In double buffering, the program must wait until the
finished drawing is copied or swapped before starting the next drawing. This waiting period could be
some milliseconds during which neither buffer can be touched. In triple buffering the program has two
back buffers and can immediately start drawing in the one that is not involved in such copying. The
third buffer, the front buffer, is read by the graphics hardware to display the image on the display.
Once the display has been drawn, the front buffer is flipped with (or copied from) the back buffer
holding the last complete screen. Since one of the back buffers is always complete, the graphics
hardware never has to wait for the software to complete. Consequently, the software and the graphics
hardware are completely independent, and can run at their own pace. Finally, the displayed image was
started without waiting for synchronization and thus with minimum lag.

VSync VSync VSync VSync

Ospay | A | A | 8 | _Cc | A
—————

GPU

o

Time

How triple buffering works:

If B takes too long, A is in use displaying the current frame. This time though, instead of wasting pro-
cessing time during the repeated buffer, the systems create a C buffer, and get to work on the next
frame. Triple buffering stops the stutter fest, and after the initial skip, the user sees a smooth

animation. It's all about presenting a stiff upper lip to the user even though things aren't going so
smoothly under the hood.

i,

© 2013, HCL Technologies. Reproduction Prohibited. This document Is protected under Copyright by the Author, all rights reserved.

ICL's capability in Android Performance Optimization | 8

Suggestion IV : Modifications in OpenGL calls

OpenGL never signals errors but simply records them; it's a must to determine whether an error
occurred. During the debugging phase, the program should call glGetError() to look for errors
frequently (for example, once per redraw) until glGetError() returns GL_NO_ERROR. We found that
glGetError gets called every time we draw. It is recommended calling glGetError after every gl call, but
with a macro that is only defined when debugging.

http://www.mesa3d.org/brianp/sig9//perfopt.htm

http://www-f9.ijs.si/~matevz/docs/007-2392-003/sgi_html/ch15.html

Any form of glGet or glls. Getting state values slows the application. Unless the application is a “middle
ware” application, it is not required to retrieve state values. During development, however, it's quite

common to call glGetError. When the application is ready to go into production, make sure to remove
glGetError calls and any other state getting and checking functions. As an alternative during
development, you can look for errors by setting OpenGL Profiler to break on errors.

https://developer.apple.com/library/mac/documentation/graphicsimaging/conceptual/OpenGLProfiler

UserGuide/Strategies/Strategies.html

For better usage we have taken the glGetError with OpenGL traces. If it's required to see the error logs
then anybody can enable the logs from user settings by going:

Settings -> {} Developer Options -> Enable OpenGL Traces

W Suggestion V : Change in Build properties

v/ Force GPU usage for all drawing, composition & rendering Graphics are handled in one of two ways,
"'software”, which means the primary CPU does the heavy lifting, and "hardware" which means the
GPU does the lifting. Hardware rendering is better because it frees up CPU clock cycles for other
stuff, so the phone/tablet moves faster/smoother (plus GPUs are designed to excel at the types of
calculations graphic intensive applications do). This feature supposedly forces programs to use the
GPU to paint 2D objects on the screen (2D was previously unsupported, so most apps and the base
Ul were software accelerated, 3D should be hardware by default).

v/ Purge unused assets to free memory

<

Improve dalvik VM execution speed by forcing use of JIT compilation Dalvik operates under a JIT
(Just In Time) compilation method which means that when developers make their apps, they
partially compile their code into bytecode which is interpreted by the Java Virtual Machine (JVM).

Dalvik converts bytecode to machinecode as the app runs to increase performance.

v/ Improve dalvik VM execution speed by disabling bytecode verification

When Java source code is compiled, it is converted into bytecode, saved in one or more class files,
and executed by the JVM. Java class files may be compiled on one machine and executed on another

machine. A properly generated class file is said to be conforming. When the JVM loads a class file, it

i,

© 2013, HCL Technologies. Reproduction Prohibited. This document Is protected under Copyright by the Author, all rights reserved.

ICL's capability in Android Performance Optimization | 9

has no way of knowing whether the class file is conforming. The class file could have been created
by some other process, or an attacker may have tampered with a conforming class file.

The Java bytecode verifier is an internal component of the JVM that is responsible for detecting
nonconforming Java bytecode. If bycode verification is skipped, the speed of dalvik VM increases.

v/ Disable native code error checking the uncessory error checking in native code is removed for

performance improvement.

v’ Disable error profiler

Suggestion VI : Added support for pixel format ABGR

By using pixel format ABGR instead of ARGB, it makes things easier for the graphics media accelerator

and it would also allow us to avoid expensive format conversions in some architectures. The result of

2D and 3D graphics is expected to rise by 10 %.

Multimedia Performance Optimizations

% Suggestion | : Hardware Composition

In the Android* media playback architecture, there is a single place through which all requests to play

media travel, whether the request leverages the NU PLAYER (for HTTP Live Streaming), or the Android™®
Stagefright (and its Awesome Player) media player service. The Media Player Service library is
responsible for coordinating all media playback requests from all the various sources to the various
players that may be registered on the platform.

For all formats such as MP4, 3GP, M4V, MPEG-2 and H.264 in well-known container formats that the
Platform® proxy media player supports, the Host Player (or any other third party media player) is

called instead of the regular players installed in Android*, from the Media Player Services. In this way
all videos are routed to the Proxy Media Player; thereafter, the request is routed from Android™* to the

host OS using the socket communication

Media Recorder Media Player

ll

lava Frameworks

Android media Android media
MediaRecorder MediaPlayer

mediarecorder [

mediaplayer

MediaPlayer Se rvice g
Surface Audio

Pro
; : StageFright O
NU Player ~
PV Author ye Player Media
Player
Interface libaudio

Android view surface

Alsa lib

ANDROID Services

HOST Debug
Interface

HOSTM ediaPlayeri nterface
Daemon

* ‘Main frame | Audio
Host Player buffer Video Plane (ALSA)

Hardware Codec

Legends:

Standard Android 3" Party Intel

© 2013, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

ICL's capability in Android Performance Optimization | 10

Graphics Overlay Using Surface Flinger in Android

When an Android application requests a video to be played, it is doing so at a particular location on
screen, and may even have its own graphics being overlaid on top of the video. We need to ensure that
the video is properly positioned and in the correct z-order with the Android graphics even though
graphics and video will be on different planes. The figure illustrates our approach:

The Media player will render to a dedicated UPP while the final composited Android Ul will use another
UPP. To compose the two UPPs and create the final scene, we have two approaches.

v’ To leverage the Chroma keying capability by setting a specific color, for example green, to the
Surface Flinger allocated memory that maps to the player in Android.

v The Android® video surface can be made opaque using Surface Flinger in Android®*. This makes the
video running in Host visible in Android®.

We have implemented a second approach. The changes required for the implementation are as follows:

/android-jellybean/frameworks/native/services/surfaceflinger/Layer.cpp
// if not everything below us is covered, we plug the holes!
Region holes(clip.subtract(under));

if ('Tholes.isEmpty()) {
clearWithOpenGL(holes, 0,0, 0, 0); //clearWithOpenGL(holes, 0, 0, O, 1);
}

return,

Suggestion Il : Leverage Hardware codecs

In Android StageFrightPlayer use software codec to play the video file. But to support hardware codec
we should integrate platform specific graphics library with Stage Fright player to improve media
playback performance.

i,

© 2013, HCL Technologies. Reproduction Prohibited. This document Is protected under Copyright by the Author, all rights reserved.

ICL's capability in Android Performance Optimization | 11

Application

Media Player

Java Frameworks

Android Media
Player

Android Services
Media Player

Media Player Service

ﬁ StageFright Player

|

platform Graphics
Library

Driver

lll

Hardware

Media Devices
(TSD,Video,Audio,Clocks)

/0 Performance Optimizations

W |/0 performance optimization with noauto_da_alloc option (Auto-fsync behavior):

Some applications do not always properly fsync() after renaming an existing file, or truncating and
rewriting, ext4 defaults to automatic syncing of files after replace-via-rename and replace-via-truncate
operations. This behavior is largely consistent with older ext3 filesystem behavior. However, fsync()
operations can be time consuming, so this automatic behavior can be disabled by using the
noauto_da_alloc option with the mount command.

The change is recommended for |/O performance optimization.

Network Performance Optimizations

By enabling network connection as type Virtio from Host when running Android in virtual environment

produces significant improvement in network performance. For this Android kernel configuration is modified
as follow:

@@ @@ CONFIG_MIl=y

CONFIG_NETCONSOLE is not set

CONFIG_NETPOLL is not set

CONFIG_NET_POLL_CONTROLLER is not set
CONFIG TUN is not set

CONFIG_TUN=y

CONFIG VETH is not set

CONFIG_VIRTIO _NET is not set
CONFIG_VIRTIO_NET=y

CONFIG_ARCNET is not set

© 2013, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

CL's capability in Android Performance Optimization | 12

Suggestions and Recommendations

Have a workshop to discuss the whitepaper and explore the way forward.

Appendix
Benchmarking Tools:

W Quadrant

Quadrant is a benchmark for mobile devices, capable of measuring CPU, memory, I/0 and 3D graphics

performance.The initial release for Android smartphones is now available on Android Market. This
release targets Android SDK 1.5 and OpenGL ES 1.1.

Performance Improvement Data Quadrant
Quadrant: 6016 (CPU,Memory, 1/0, 2D, 3D)

B 1947
0 250 200 750 1,000 1,250 1,500 1,750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000 5250 5500 5750 6000 6,250

4
HTC One X

4 —
Asus Transformer Prime TF201 -
- ; _ A ——
Motorola ATRIX 4G -
P : | —
Samsung Galaxy Tab 10.] 1

4
Samsung Galaxy Nexus -

I
LG Optimus 2X

- |)
HTC Desire HD -
I =

Samsung NEKHHST

Total: 6016 ®m CPU: 19002 ™ Mem: 5067 ® 1/0:3165 W 2D: 1000 ™ 3D: 1848

w Vellamo

Vellamo is designhed to be an accurate, easy to use suite of system-level benchmarks for devices based
on Android 2.3 forward. Vellamo began as a mobile web benchmarking tool that today has expanded
to include two primary chapters. The HTML5 Chapter evaluates mobile web browser performance and
the Metal Chapter measures the CPU subsystem performance of mobile processors.

- See more at: http://www.quicinc.com/vellamo/#sthash.wGNSLhRz.dpuf

Performance Improvement Data Vellamo:
Vellamo HTML5 (Total) : 1232

© 2013, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

ICL's capability in Android Performance Optimization | 13

e R e Performance Improvement Data Vellamo:

47 5% =0 Vellamo Metal (Total) : 391

- - 0 Tests Present Original Percentage
Aquarium Canvas 94 1 9300 Increase
V8 Benchmark 90 78 15 _
page | m | 5 | s |
Reflo 73 54 35
P B

Ramiam | 89 | 73 | 2

Sun Canvas

Pixel Blender

Canvas Crossfade

Ocean Scroller 71 1
WebGL Jellyfish 81 1
Inline Video 73 1
Load & Reload 212 1

Netperf

Netperf is a benchmark that can be used to measure various aspects of networking performance. Its
primary focus is on bulk data transfer and request/response performance using either TCP or UDP and
the Berkeley Sockets interface.This tool is maintained and informally supported by the IND Networking
Performance Team. It is NOT supported via any of the normal Hewlett-Packard support channels.

Performance Improvement Data

Netperf Remote Server Netperf Local Host

Remote Server Tests Present Original 7 Increase

Present Original % Increase

Throughput

1076
TCP STREAM Test , 27563
bits/sec

TCP REQUEST/RESPONSE Test | transaction
(512 byte requests,64 byte rate per
responses) second

709.55

568.95 24,7

75.74 2639

2380.53 1778.37 339

1263.55 548.54 130.3

TCP REQUEST/RESPONSE Test | transaction

(1 byte requests, 1 byte rate per 234063 1818.41 28.7

130471 591.16 120.7

transaction
TCP CONNECT
REQUEST/RESPONSE Test rate per 53449 1349 150.4 1530.71 111263 37.6
second
Throughput
UDP STREAM Test 2_10“6 908 69 5773 1474.0 2107.32 2156.13 -2.3
bits/sec
UDP REQUEST/RESPONSE transaction
Test (512 byte requests, 64 rate per 2635.29 2102.06 254
byte responses) second 144299 57817 149.6
UDP REQUEST/RESPONSE transaction
Test (1 byte requests, 1 byte rate per 1430 53 269964 217081 244
responses) second ' 617.49 131.7

© 2013, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

HCL's capability in Android Performance Optimization | 14

Author Info

Vikas Gupta Nitin Garg Priyank Dwivedi
Software Architect/ Technical Specialist/ Technical Leader /
Consumer Electronics Division Consumer Electronics Division Consumer Electronics Divison

HCL ERS app now available on Appstore.
Download it today.

#_ Available on the

==t & App Store

This whitepaper Is published by HCL Engineering and R&D Services.

The views and opinions In this article are for informational purposes only and should not be considered as a substitute for professional business advice. The use herein of any

trademarks is not an assertion of ownership of such trademarks by HCL nor intended to imply any association between HCL and lawful owners of such trademarks.

For more information about HCL Engineering and R&D Services,

Please visit http://www.ncltech.com/engineering-rd-services

Copyright@ HCL Technologies

All rights reservea.

é‘“ﬁi Hello, I'm from HCL's Engineering and R&D Services. We enable technology led organizations to go to market with innovative products
and solutions. We partner with our customers in building world class products and creating associated solution delivery ecosystems to
help bring market leadership. We develop engineering products, solutions and platforms across Aerospace and Defense, Automotive,

T Consumer Electronics, Software, Online, Industrial Manufacturing, Medical Devices, Networking and Telecom, Office Automation,

Semiconductor and Servers & Storage for our customers.

For more details contact: ers.info@hcl.com
Follow us on twitter: http://twitter.com/hclers and

our blog http://www.hcltech.com/blogs/engineering-and-rd-services Hc L

Visit our website: http://www.hcltech.com/engineering-services/

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14

