
Accelerate data processing 
with Snowflake's Snowpark 
developer framework

Unlock the power of DataFrame-like programming
and advanced data operations



Introduction

Snowflake’s Snowpark is a developer framework 
that brings Data frame-like programming, using 
languages like Python, Scala and Java to perform 
data processing operations inside 
Snowflake compute.

The Snowpark library will help eliminate the need 
to move data to the system where the application 
code runs. 

It allows for custom code to be defined as 
user-defined functions (UDFs) and/or stored 
procedures and use that code in Data 
frame operations.

Developers can use toolsets like version control, 
development IDE, debugging tools, own custom 
libraries and also manage package dependencies 
easily using Anaconda.

Snowflake’s unique multi-cluster shared data 
architecture powers the performance, elasticity 
and governance of Snowpark.

Snowpark-optimized warehouse

Snowpark provides 16 times more memory per node and 10 times more storage for compute-intensive 
workloads. These are available in sizes starting from medium till 6X-Large across all regions in all 
public cloud (AWS, Azure, GCP).

This type of warehouse is recommended for large memory workloads such as ML training, stored 
procedures, UDF and UDTF.



Use cases

Syntax differences in Spark and Snowpark

Data science and machine learning:

ML models can be built and executed on Snowflake compute, using Data 
frame API and server-side runtime capabilities.

Data preparation:

Snowpark can be used for data cleansing, standardization and feature 
engineering using SQL, Python, Scala or Java. For complex data 
transformations, reusable and readable code can be created using the 
functional programming paradigm.

Data-intensive applications:

Snowpark lets applications run on Snowflake compute. Combining 
Snowflake-native applications, secure data sharing and Snowpark both allow 
customers to process data in a secure and governed way.

Data visualization:

Using libraries as an example, matplotlib, among others, is available from 
Anaconda python distribution. Through this, users can create visualizations 
and analyze data.

Syntactically, Snowpark is very close to Spark and Databricks coding practices. Below, however, are a 
few differences:

Read file from cloud storage (AWS S3)

Create an Instance profile to establish 
connectivity from Databricks notebook to S3

Create a mount point and read data into 
data frame based on file types

Spark/Databricks

Create a storage integration for AWS S3
to Snowflake connectivity

Create an external stage and read data
into data frame based on file types

df_json = 
session.read.json("@my_stage2/data1.json")
df_catalog = session.read
.schema(StructType([StructField("name", 
StringType()), StructField("age", IntegerType())]))
.csv("@stage/some_dir")

df = (spark.read.format("csv")
.option("header", "true").option("inferSchema", 
"true").load("dbfs:/mnt/mntpoc/out/
STG_GDP_DATA_OUT/data_geo.csv")

Snowpark



The HCLTech differentiator

Migrate to Snowflake leveraging HCL’s ADvantage Migrate Suite.
ADvantage Migrate is a one-stop solution to modernize the entire data landscape within an enterprise.

Spark/Databricks

Snowpark

Write Data frame to table

Write output to a file

(usersDF.write.option("compression", "snappy")
 .mode("overwrite").parquet(OutputPath))

Write output to a table

eventsDF.write.mode("overwrite").saveAsTable
("events_p")

Write output to a file

copy_result=df.write.copy_into_location
("@my_stage_s3/data", file_format_type=
"parquet", header=True, overwrite=True)

Write output to a table

Df.write.mode("overwrite").save_as_table
("table1")

Spark/Databricks

Snowpark

Differences in transform functions

• If()
• Boolean(col_nm)
• collect_list(col_name)
• concat_ws(", ", collect_list(col_name))
• date_sub(created_date, 3)
• from_unix_time(unixtime)
• datediff(updated_date, created_d
• newDF = df.select("user_id", col("geo.city")
  .alias("city"))

• Iff()
• Col_nm::Boolean
• array_agg(col_name)
• listagg(col_name, ', ')
• dateadd(day, -3, created_date)
• unixtime::timestamp_ntz
• datediff(day, created_date, updated_date)
• df_new = df.select("id", col("parent_id")
  .as_("pid"))

Our 3-step automation process with pre-engineered products

Gateway Suite

Discover, Analyze and
Auto convert the legacy code
& DB schemas using
HCL Gateway Suite
Gateway Suite:
Embed automation in
modernization process

Sketch

Modernize the data 
pipelines and migrate
data using HCL Sketch
Sketch:
Platform agnostic
configuration driven
data processing

Gatekeeper

Achieve zero-touch
automated Data
Reconciliation and Testing post 
migration using HCL Gatekeeper
Gatekeeper: 
Auto reconcile, test and setup
test driven development and 
continuous testing

1 2 3



hcltech.comHCLTech is a global technology company, home to 219,000+ people across 
54 countries, delivering industry-leading capabilities centered around digital, 
engineering and cloud, powered by a broad portfolio of technology services 
and products. We work with clients across all major verticals, providing 
industry solutions for Financial Services, Manufacturing, Life Sciences and 
Healthcare, Technology and Services, Telecom and Media, Retail and CPG, 
and Public Services. Consolidated revenues as of 12 months ending 
September 2022 totaled $12.1 billion. To learn how we can supercharge 
progress for you, visit hcltech.com.


