

REST API Guide for Virtualized Infrastructure
Manager, Version 6.0

 First Published Date: November 18, 2025

Contents
VIM REST API Guide .. 9

REST API Overview ... 2

VIM REST API Using Curl for IPv6 .. 4

Prerequisites ... 4

Offline Validation using Curl ... 5

Start New Installation ... 6

Pod Management Operations .. 7

Prerequisites ... 7

Update Setup Data .. 8

Add Compute ... 8

Add Storage .. 9

Remove Compute ... 9

Remove Storage ... 10

Fetch Hardware Inventory .. 11

VIM REST API Using Curl for IPv4 .. 18

Nodes APIs and Commands ... 18

Power Status of Nodes .. 20

List Openstack Configuration Command ... 21

Cluster Recovery .. 21

Last-Run-Status Command ... 22

Reconfigure Regenerate Secrets ... 22

Reconfigure Set Openstack Configuration ... 23

Reconfigure CIMC Password ... 24

API Resources ... 26

Setupdata .. 26

Creating Setupdata.. 27

Retrieving a Single Setupdata ... 28

Updating a Setupdata .. 29

Deleting a Setupdata ... 30

Install Resource .. 31

Return a List of Installation .. 31

Create an Installation .. 32

Retrieve the Installation .. 33

Stop the Installation .. 34

Nodes .. 35

Getting a List of Nodes ... 35

Add New Nodes ... 36

Retrieve Information about a Particular Node .. 37

Remove a Node .. 38

Replace a Controller ... 40

Offline Validation ... 41

Create an Offline Validation Operation .. 41

Retrieve the Results of Offline Validation .. 42

Update .. 43

Roll Back an Update ... 44

Commit an Update .. 45

Retrieve the Details of an Update ... 45

Secrets .. 46

OpenStack Configs ... 47

Version ... 48

Health of the Management Node .. 48

Hardware Information .. 49

Create a HWinfo Operation .. 49

Retrieve the Results of Hwinfo Operation .. 49

Release Mapping Information ... 50

POST Install Operations ... 51

Create a Post install Operation ... 51

Retrieve a Status of the Post Install Operation .. 52

NFVBench Network Performance Testing ... 52

Create NFVBench Run ... 52

REST API To Create Fixed Rate Test .. 53

Status Polling .. 55

REST API To Get Fixed Rate Test Result .. 55

REST API To Get NDR/PDR Test Results .. 57

REST API to Get Node Hardware Information .. 58

REST API to Get Mandatory Features Mapping 58

REST API to Get Optional Features Mapping .. 59

Cloud Sanity Information ... 60

Create a cloud-sanity Test... 60

Retrieve a Status of the Post Install Operation .. 60

List Specific cloud-sanity Test Results ... 61

Show cloud-sanity Test Results .. 62

Delete cloud-sanity Test Results ... 62

Disk Maintenance information ... 63

Create a Check Disk Operation ... 64

Create a Replace Disk Operation .. 64

List Check Disk Operation ... 65

Show a Completed diskmgmt Operation .. 66

Delete a Completed diskmgmt Operation ... 66

OSD Maintenance Information ... 67

Create an OSD Disk Operation ... 67

Create a Replace OSD Operation.. 68

List Check OSD Operation ... 68

Delete a Completed osdmgmt Operation .. 70

Hardware Management Utility ... 70

Create a Validate Operation .. 70

Create a Validate Operation for Failure .. 71

List a Validate Operation .. 72

Show a Completed hardwaremgmt Operation .. 72

Delete a Completed hardwaremgmt Operation ... 73

List Password Secrets ... 74

Hardware Management Utility ... 74

Create a Validate Operation .. 74

Create a Validate Operation for Failure .. 75

Show a Completed hardwaremgmt Operation .. 77

Disk and OSD Maintenance .. 81

Disk Maintenance information ... 81

Create a Check Disk Operation ... 81

Create a Replace Disk Operation .. 83

List Check Disk Operation ... 84

Show a Completed diskmgmt Operation .. 85

Delete a Completed diskmgmt Operation ... 86

Create an OSD Disk Operation ... 87

Create a Replace OSD Operation.. 88

List Check OSD Operation ... 88

Show a Completed osdmgmt Operation ... 89

Delete a Completed osdmgmt Operation .. 90

Cloud Sanity ... 90

Create a cloud-sanity Test ... 91

List cloud-sanity Test Results ... 91

Show cloud-sanity Test Results .. 94

Delete cloud-sanity Test Results ... 95

Mandatory/Optional Feature Mapping.. 96

Mandatory Feature Mapping .. 96

Optional Feature Mapping .. 97

Testing and Polling .. 98

NFVBench Network Performance Testing ... 98

Create NFVBench Run ... 98

Status Polling .. 99

Post-Installation Operations .. 103

Create a Post Install Operation ... 103

Retrieve Post Install Operation Status .. 104

Version and Hardware Information ... 105

Hardware Information .. 105

Create a HWinfo Operation .. 106

Retrieve Hwinfo Operation Results .. 106

Get Node Hardware Information .. 107

OpenStack Setup ... 108

Secrets .. 108

Retrieve the List of Secrets that are Associated with the OpenStack Setup

 .. 108

OpenStack Configuration ... 109

Retrieve the List of Configurations Associated with the OpenStack Setup

 .. 109

Release Mapping Information ... 109

Update ... 111

Start an Update Process .. 111

Resource URI ... 111

Roll Back an Update ... 112

Commit an Update .. 112

Retrieve the Details of an Update ... 113

Install Resource .. 114

Retrieve Information About a Particular Node 114

Install Resource ... 115

Return a List of Installation .. 115

Create an Installation .. 116

Retrieve the Installation .. 117

Nodes and Replace Controller ... 120

Nodes .. 120

Getting a List of Nodes ... 120

Add New Nodes ... 121

Remove a Node .. 122

Replace a Controller ... 125

Setupdata and Offline Validation .. 127

Setupdata .. 127

Retrieving the Setupdata ... 127

Creating Setupdata .. 128

Retrieving a Single Setupdata ... 129

Updating a Setupdata .. 130

Deleting a Setupdata ... 131

Offline Validation ... 132

Create an Offline Validation Operation .. 132

Retrieve the Results of Offline Validation .. 133

VIM REST API Guide
 The following sections explain about how VIM REST API is used to manage NFVI.

• REST API Overview

• VIM REST API Using Curl for IPv6

• VIM REST API Using Curl for IPv4

• API Resources

 2

REST API Overview
A Representational State Transfer (REST) API is used to install, expand, and update VIM. Actions
performed using the REST APIs are:

o Install VIM on NFVI pods.

o Add and delete pods to and from NFVI during installation.

o Update VIM software.

o Replace controller nodes.

o Perform cloud maintenance operations.

Run cloud validations using Virtual Machine Throughput (VMTP). VMTP is a data path performance
measurement tool for OpenStack clouds.

The following figure shows the workflow of VIM REST API.

The VIM REST API security is provided by the Secure Sockets Layer (SSL) on the Apache web
server. The mod_wsgi running on the Rest API server calls the Pecan-based web application. The
Pecan REST API server requires a username and password to authorize the REST API server
requests.

Apache handles the authorization of the request to access the Pecan web application. Use the VIM A
 PI to:

Upload a new setup_data.yaml file to start, stop, or query the state of the installation.

Manage the cloud.

Add/remove compute and Ceph nodes and replace the controller nodes.

 3

Launch VMTP (L2/L3 data plane testing) and CloudPulse.

The VIM REST API is enabled by default in the management node if you are using the supplied VIM
buildnode.iso. You can access API server on the br_api interface on port 8445. The authentication is
enabled by default on the web service.

You can access the API end points using the following URL format:
https://<Management_node_api_ip>:8445

By default, the basic authentication is enabled for the API endpoints in the management node. You
can find the authentication credentials in the following file in the management node:

/opt/cisco/ui_config.json

The following code shows a sample ui_config.json file.
{

"Kibana-Url": "http://10.10.10.10:5601", "RestAPI-Url": "https://

10.10.10.10:8445",

"RestAPI-Username": "admin",

"RestAPI-Password": "a96e86ccb28d92ceb1df", "RestDB-Password":

"e32de2263336446e0f57", "BuildNodeIP": "10.10.10

 4

VIM REST API Using Curl for IPv6
• Prerequisites

• Offline Validation using Curl

• Start New Installation

• Pod Management Operations

• Prerequisites

• Update Setup Data

• Add Compute

• Add Storage

• Remove Compute

• Remove Storage

• Replace controller

• Fetch Hardware Inventory

• Glance Image Upload

Prerequisites

1. You need to copy the certificates from the management node to local machine from where you would launch
the APIs.

2. Create a folder in local machine and copy the certificates:

3. Copy REST API CA Certificates (for mercury commands)

4. For each POD, get the REST API credentials:

mkdir ~/certificates

scp root@<Management Node>:/var/www/mercury/mercury-ca.crt

~/certificates

The key information that you need are br_api and cloud_api (external_lb_vip_ipv6_address).

 5

Offline Validation using Curl

1. Create offline validation test.
Request
Curl Command:
curl -g -i -X POST -H "Content-Type: application/json" -u admin:<Password> -H "Accept: application/json" --cacert
'C:\<mercury-ca.crt payh>' -d "{\"jsondata\": $(cat setup_data.json)}" https://<Pod IP>:8445/v1/offlinevalidation

 Response

2. Get the offline validation test result:

Request

Curl Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Password> -H 'Accept: application/json' -H 'User-
Agent: python-ciscovimclient' --cacert 'C:<mercury-ca.crt path>' https://<Pod
IP>:8445/v1/offlinevalidation/<UUID

Response

cat /opt/cisco/ui_config.json

{

"Kibana-Url": "https://[2001:420:293:2433:172:29:85:110]:5601",

"RestAPI-Username": "admin",

"RestAPI-Password": "c9686a8f3ca46644ae95",

"RestAPI-Url":

"https://[2001:420:293:2433:172:29:85:110]:8445", "BuildNodeIP":

"2001:420:293:2433:172:29:85:110". ----> br_api

}

{"status": "NotValidated", "uuid": "2b8253f4-ad9f-4fbf-b224-

a65bd210392a", "created_at":

"2019-02-28T18:02:36.808740+00:00", "updated_at": null,

"jsondata": "{}"}

{"status": "ValidationFailed", "uuid": "2b8253f4-ad9f-4fbf-

b224-a65bd210392a",

"created_at": "2019-02-28T18:02:36+00:00", "updated_at": "2019-

02-28T18:02:57+00:00",

"jsondata": ""}

 6

Start New Installation

1. Create new setup data before starting new installation, for example

2. To start the installation:

Request:

Response:

3.Get active setup data with UUID after installation is started:

Request:

curl -g -i -X POST -H 'Content-Type: application/json' -u

admin:46d13357ef15e5482b52 -H 'Accept: application/json' -H

'User-Agent: python-ciscovimclient' --cacert

~/certificates/mercury-ca.crt -d '{u'meta': {}, u'name':

u'NEWSETUPDATA', u'jsondata': {<SetupData in JSON Format>}}'

https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8445/setupdata

Curl -g -i -X POST -H 'Content-Type: application/json'

admin:46d13357ef15e5482b52 -H 'Accept: application/json' -H

'User-Agent: python-ciscovimclient' --cacert

~/certificates/mercury-ca.crt -d '{u'stages': u'vmtp',

u'setupdata': u'8b0d4a46-c67f-4121-99af- 32fde52a82eb'}'

https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8445/install

{u'uuid': u'6b02c2ab-441e-471a-9dcc-e771136186e1', u'setupdata':

u'8b0d4a46-c67f-4121-99af-32fde52a82eb', u'vmtpresult': u'',

u'updated_at': None, u'validationstatus': u'', u'currentstatus':

u'Not Available', u'install_logs': u'', u'stages': {u'baremetal':

u'Scheduled', u'bootstrap': u'Scheduled', u'runtimevalidation':

u'Scheduled', u'ceph': u'Scheduled', u'orchestration':

u'Scheduled', u'validation': u'Scheduled', u'hostsetup':

u'Scheduled', u'vmtp': u'Scheduled'}, u'created_at':

u'2019-03-05T05:22:30.986823+00:00'}

curl -g -i -X GET -H 'Content-Type: application/json' -u

admin:46d13357ef15e5482b52 -H

'Accept: application/json' -H 'User-Agent: python-

ciscovimclient' --cacert

~/certificates/mercury-ca.crt

https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8445/setupdata

 7

Response
It will return to the list format. You must check the status. The status can be Active, Installation Failed,or Installing.

4.Monitoring the installation using OP-information (current operation information):

Request:

Response:

Check for the value of key insight_monitor_status. If it is Running, it indicates that the last operation is still in

running state. Once the operation is completed, the value is either Success/Failed based on the result.

Sample output information after successful completion is given below:

Pod Management Operations
Prerequisites

Before performing any pod management operation, you need to update the setup data using
PUT method.

{"setupdatas": [{"status": "Active", "uuid": "c5bc5fd9-6f4b-

43e7-a61a-a9d409569943", "jsondata": " {<Setupdata JSON>}",

"meta": "{}", "name": "NEWSETUPDATA"}]}

curl -g -i -X GET -H 'Content-Type: application/json' -u

admin:46d13357ef15e5482b52 -H 'Accept: application/json' -H

'User-Agent: python-ciscovimclient' --cacert

~/certificates/mercury-ca.crt

https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8445/op_info

{u'created_at': u'2019-02-25 18:15:00+00:00', u'updated_at':

u'2019-02-25 18:15:00+00:00',

u'reboot_required': False, u'update_status': False,

u'current_op_logs':

u'https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8008/mercury/ae

3ed699-2ffe-4ae0-a8ab-83ef7fdce008',

u'current_op_status': u'Running', u'insight_monitor_status':

u'Running',

u'current_op_name': u'install_op Orchestration',

u'current_op_monitor':

u'Install_Op_orchestration'}

{"created_at": "2019-03-04 21:35:00+00:00", "updated_at":

"2019-03-04 21:36:24+00:00",

"reboot_required": false, "update_status": false,

"current_op_logs": "", "current_op_status": "diskmgmt_completed",

"insight_monitor_status": "Success", "current_op_name":

"DiskMgmt", "current_op_monitor": ""}

 8

Update Setup Data

1. Get the active setup data UUID using the install API.

Request:

 Response:

2. Send the PUT request on the setup data UUID

Note: Change the setup_data.yaml file into json using below steps

Step 1. Get current setupdata

Step 2. Convert setupdata string generated from step 1 into json file format

You can perform the following pod management operations:

• Add Compute

• Add Storage

• Remove Compute

• Remove Storage

• Replace Controller

Add Compute

1. List the nodes.

curl -g -i -X GET -H 'Content-Type: application/json' -u

admin:46d13357ef15e5482b52 -H

'Accept: application/json' -H 'User-Agent: python-

ciscovimclient' --cacert

~/certificates/mercury-ca.crt

https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8445/install

{u'installs': {u'uuid': u'6b02c2ab-441e-471a-9dcc-

e771136186e1', u'setupdata': u'8b0d4a46-c67f-4121-99af-

32fde52a82eb', . . .}}

curl -g -i -X PUT -H 'Content-Type: application/json' -u

admin:46d13357ef15e5482b52 -H

'Accept: application/json' -H 'User-Agent: python-

ciscovimclient' --cacert

~/certificates/mercury-ca.crt -d '{u'meta': {}, u'name':

u'NEWSETUPDATA', u'jsondata':

{<Setupdata JSON>}}'

https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8445/setupdata/

8b0d4a46-c67f-4121-99af-32fde52a82eb

 9

Request

Update new setupdata with node manually, follow steps given in the prerequisites to manual update

the setupdata

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent:

python-ciscovimclient" -u admin:<rest api admin password> --cacert <mercury cert path> -d

@<payload in json file format> https://<br_api of the pod>:8445/setupdata/<setupdata uuid>

Run below command to add node into the cluster

curl -i -X POST -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent:
python-ciscovimclient" -u admin:<Rest API admin password> --cacert <mercury certificate path> -d
'{"name": "<Node name>", "skip_vmtp": false}' https://<br_api>:8445/nodes/add_compute

1. POST to nodes to add entry:

Add Storage

1. Follow the steps 1 and 2 given in the add compute as mentioned above
2. Execute below command to add storage into the storage cluster

curl -i -X POST -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent: python-
ciscovimclient" -u admin:<Rest API admin password> --cacert <mercury certificate path> -d '{"name": "<Node
name>", "skip_vmtp": false}' https://<br_api>:8445/nodes/add_compute

3. POST to nodes to add entry:

Remove Compute

 List the nodes:

Request:

Response:

curl -g -i -X GET -H 'Content-Type: application/json' -u

admin:46d13357ef15e5482b52 -H

'Accept: application/json' -H 'User-Agent: python-

ciscovimclient' --cacert

~/certificates/mercury-ca.crt

https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8445/nodes

curl -g -i -X GET -H 'Content-Type: application/json' -u

admin:46d13357ef15e5482b52 -H

'Accept: application/json' -H 'User-Agent: python-

ciscovimclient' --cacert

~/certificates/mercury-ca.crt

https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8445/nodes

 10

1. Remove the node entry in setup data and update the setup data by following the steps given under
prerequisites.

2. . Send delete request on nodes, to remove the storage node for that UUID:

Remove Storage

1.Get the UUID of the node to be removed by getting the list of nodes.

2.Remove the node entry in setup data and update the setup data using steps mentioned in the

prerequisites.

3.Send delete request on nodes, to remove the storage node for that UUID.

 Request

Response:

curl -g -i -X GET -H 'Content-Type: application/json' -u

admin:46d13357ef15e5482b52 -H

'Accept: application/json' -H 'User-Agent: python-

ciscovimclient' --cacert

~/certificates/mercury-ca.crt

https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8445/nodes

{"nodes": [{"status": "Active", "uuid": "1929776f-8b77-4b35-b55c-

0abd6433b989",

"setupdata": "8b0d4a46-c67f-4121-99af-32fde52a82eb", "node_data":

"{\"rack_info\":

{\"rack_id\": \"RackC\"}, \"cimc_info\": {\"cimc_ip\":

\"172.29.172.81\"},

\"management_ip\": \"21.0.0.13\"}", "updated_at": "2019-03-

04T21:42:38+00:00",

"reboot_required": "No", "mtype": " block_storage", "install":

"6b02c2ab-441e-471a-9dcc-e771136186e1", "power_status":

"PowerOnSuccess", "install_logs":

"https://172.31.231.17:8008/mercury/071e79a5-b279-4628-bcf0-

df168152cc42", "created_at":

"2019-03-05T05:42:38+00:00", "name": "compute-3"}, . . .]}

curl -g -i -X DELETE -H 'Content-Type: application/json' -u

admin:46d13357ef15e5482b52

-H 'Accept: application/json' -H 'User-Agent: python-

ciscovimclient' --cacert

~/certificates/mercury-ca.crt -d '{u'force_op': False, u'name':

u'1929776f-8b77-4b35-b55c-0abd6433b989'}'

https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8445/nodes/remo

ve_compute

 11

Replace Controller:

1. Remove the node entry in setup data using steps mentioned in the prerequisites.

Execute below command to update setupdata

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent:

python-ciscovimclient" -u admin:<Rest api admin passwd> --cacert "<mercury cert file path>" -d

@<setup data in json format> https://<br_api ip>:8445/setupdata/<setupdata uuid>

2.Put nodes to replace entry

3.Send delete request on nodes, to remove the storage node for that UUID.

Request:

Fetch Hardware Inventory

Request:

{"nodes": [{"status": "Active", "uuid": "0b7b2b6e-305c-48e0-b9f3-

0ddb72bd3b3f", "setupdata": "8b0d4a46-c67f-4121-99af-32fde52a82eb",

"node_data": "{\"rack_info\":

{\"rack_id\": \"RackC\"}, \"cimc_info\": {\"cimc_ip\":

\"172.29.172.81\"},

\"management_ip\": \"21.0.0.13\"}", "updated_at": "2019-03-

04T21:42:38+00:00", "reboot_required": "No", "mtype": " block_storage",

"install":

"6b02c2ab-441e-471a-9dcc-e771136186e1", "power_status": "PowerOnSuccess",

"install_logs":

"https://172.31.231.17:8008/mercury/071e79a5-b279-4628-bcf0-

df168152cc42", "created_at": "2019-03-05T05:42:38+00:00", "name": "Store-

3"}, . . .]}

curl -g -i -X DELETE -H 'Content-Type: application/json' -u

admin:46d13357ef15e5482b52

-H 'Accept: application/json' -H 'User-Agent: python-

ciscovimclient' --cacert

~/certificates/mercury-ca.crt -d '{u'force_op': False, u'name':

u'0b7b2b6e-305c-48e0-b9f3-0ddb72bd3b3f'}'

https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8445/nodes/remove

_storage

{"nodes": [{"status": "Active", "uuid": "79e43c4c-8cbd-4c81-8c22-

3aec717298e9", "setupdata": "8b0d4a46-c67f-4121-99af-

32fde52a82eb", "node_data": "{\"rack_info\":

{\"rack_id\": \"RackC\"}, \"cimc_info\": {\"cimc_ip\":

\"172.29.172.81\"},

\"management_ip\": \"21.0.0.13\"}", "updated_at": "2019-03-

04T21:42:38+00:00", "reboot_required": "No", "mtype": " control",

"install":

"6b02c2ab-441e-471a-9dcc-e771136186e1", "power_status":

"PowerOnSuccess", "install_logs":

"https://172.31.231.17:8008/mercury/071e79a5-b279-4628-bcf0-

df168152cc42", "created_at": "2019-03-05T05:42:38+00:00", "name":

"gg34-10"}, . . .]}

 12

Glance Image Upload

curl -g -i -X GET -H 'Content-Type: application/json' -u

admin:46d13357ef15e5482b52 -H

'Accept: application/json' -H 'User-Agent: python-ciscovimclient' -

-cacert

~/certificates/mercury-ca.crt

https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8445/v1/hwinfo

 13

Use Rest APIs to upload and delete multiple images to/from the cloud. Following is the REST API
that are available for usage.

POST /upload

This API is responsible for uploading the image to respective Openstack Cloud.

JSON Payload

CURL Request

Following is an example Curl request.

curl -s -k -X DELETE -d '{"upload": {"podsip":["172.23.105.218",
"172.29.85.78"],"images":["buildnode-internal-20606.iso","CentOS-7-x86_64-GenericCloud-
1503.qcow2"]}}'-H "Auth: " https://172.29.85.78:9001/upload

Delete/Upload

This API is responsible for deleting the image from respective Openstack Cloud.

JSON Payload

{

"podsip":["172.31.231.17",

"10.30.116.244",

],

"images":[

"xxxxxx.iso", "yyyyyy.qcow2",

]

}

Response
{"Upload":true}

curl -s -k -X POST -d '{"upload": {"podsip":["172.23.105.218",

"172.29.85.78"],"images":["buildnode-internal-20606.iso","CentOS-7-

x86_64-GenericCloud-1503.qcow2"]}}'

-H "Auth: <Token>" https://172.29.85.78:9001/upload

https://172.29.85.78:9001/upload

 14

CURL Request

 Following is the example Curl request:

Response

GET /upload:

This API is responsible for getting the image list from respective Openstack Cloud. Following
are the query string parameters to be passed with GET URL:

1. odsip: It is a comma separated string which represents pod IPs, whose Openstack image list needs to be
fetched.

2. images: It is a comma separated string which represents Openstack images whose status needs to be fetched.
3. refresh: Takes the value true or false. Used to get updated Openstack images list.

Following are the CURL request examples:

Example 1

{

"podsip":["172.31.231.17",

"10.30.116.244",

],

"images":[

"xxxxxx.iso", "yyyyyy.qcow2",

]

}

curl -s -k -X DELETE -d '{"upload": {"podsip":["172.23.105.218",

"172.29.85.78"],"images":["buildnode-internal-20606.iso","CentOS-7-

x86_64-GenericCloud-1503.qcow2"]}}'

-H "Auth: <Token>" https://172.29.85.78:9001/upload

{"Delete":true}

 15

curl -s -k -H "Auth: <Token>"

https://172.29.85.78:9001/upload

This gives the result of pods on which upload/get/delete

operation are performed.

{

"uploaded": {

"172.29.85.78": {

"opsinprogress": 0,

"images": null,

"error": ""

},

"172.23.105.218": {

"opsinprogress": 0,

"images": null,

"error": ""

}

}

}

 16

Example 2:

Example 3:

curl -s -k -H "Auth: <Token>"

https://172.29.85.78:9001/upload?"podsip=172.29.85.78&refresh=true"

{

"uploaded": {

"172.29.85.78": {

"opsinprogress": 1,

"images": null,

"error": ""

},

}

curl -s -k -H "Auth: <Token>"

https://172.29.85.78:9001/upload?"podsip=172.29.85.78"

{

"uploaded": {

"172.29.85.78": {

"opsinprogress": 0, "images": [

{

"OSStatus": "active", "UploadStatus": "UploadSuccess", "ErrStatus":

"",

"ID": "c50284d7-191a-42ed-a289-9b52d19b9fd5",

"Name": "buildnode-internal-20606.iso"

},

{

"OSStatus": "active", "UploadStatus": "UploadSuccess", "ErrStatus":

"",

"ID": "fee44efc-684e-46ac-aa89-b6e785faf1b4", "Name": "CentOS-7-

x86_64-GenericCloud-1503.qcow2"

}

],

"error": ""

}

}

}

 17

Example 4:

curl -s -k -H "Auth: <Token>"

https://172.29.85.78:9001/upload?"podsip=172.29.85.78&

images=buildnode-internal-20606.iso"

{

"uploaded": {

"172.29.85.78": {

"opsinprogress": 0,

"images": [

{

"OSStatus": "active",

"UploadStatus": "UploadSuccess",

"ErrStatus": "",

"ID": "c50284d7-191a-42ed-a289-9b52d19b9fd5",

"Name": "buildnode-internal-20606.iso"

}

],

"error": ""

}

}

}

 18

VIM REST API Using Curl for IPv4
• Getting REST API Username & Password

• Nodes APIs and Commands

• List Openstack Configuration Command

• List Password Secrets

• Cluster Recovery

• Last-Run-Status Command

• Reconfigure Regenerate Secrets

• Reconfigure Set Password

• Reconfigure Set Openstack Configuration

• Reconfigure CIMC Password

Getting REST API Username & Password

Use the following configuration to get REST API Username and Password

Got credentials from /opt/cisco/ui_config.json file

Nodes APIs and Commands

List Nodes

Use the following curl command to get the node's status, power status, reboot status, and mtype I
 nformation:

cat /opt/cisco/ui_config.json

{

"Kibana-Url": "https://172.26.229.73:5601", "RestAPI-Username":

"admin",

"RestAPI-Password": "cc52dc6d82bde0754ee3", "RestAPI-Url":

"https://172.26.229.73:8445",

"BuildNodeIP": "172.26.229.73". ---> br_api

}

curl -i -X GET -u admin:**** -H 'Content-Type: application/json' -H 'Accept: application/json'
--cacert /var/www/mercury/mercury-ca.crt https://172.31.231.17:8445/v1/nodes

 19

Response:

Power OFF Nodes

To get the power off status of the nodes, use the below command:

Power ON Nodes

To get the power ON status of the nodes, use the following command:

{"nodes": [{"status": ". . . . "name": "Store-2"}]}

curl -i -X POST -H 'Content-Type: application/json' -u admin:**** -

H 'Accept:

application/json' --cacert /var/www/mercury/mercury-ca.crt -d

'{'status': 'PowerOff', 'force_op': False, 'name': '<Node UUID>'}'

https://172.31.231.17:8445/v1/nodes/node_power_status

You can find the UUID of the node from the list nodes command.

 20

Power Status of Nodes

To get the Live status of the nodes, first send POST request to /v1/hwinfoAPI, and then place the
GET request on v1/hwinfo/get_nodes_power_status after a minute approximately.

Run the below commands to send the POST request and get the power status:

Request:

Response:

Reboot Node:

curl -i -X POST -H 'Content-Type: application/json' -u admin:**** -

H 'Accept:

application/json' --cacert /var/www/mercury/mercury-ca.crt -d

'{'status': 'PowerOn', 'force_op': False, 'name': '<Node UUID>'}'

https://172.31.231.17:8445/v1/nodes/node_power_status

You can find the UUID of the node from the list nodes command.

curl -i -X POST -H 'Content-Type: application/json' -u admin:**** -

H 'Accept: application/json' --cacert /var/www/mercury/mercury-ca.crt

-d '{}' https://172.31.231.17:8445/v1/hwinfo

curl -i -X GET -H 'Content-Type: application/json' -u admin:**** -H

'Accept: application/json'

--cacert /var/www/mercury/mercury-ca.crt

https://172.31.231.17:8445/v1/hwinfo/get_nodes_power_status

{'Store-3': {'intended_power_state': 'PowerOnSuccess',

'actual_power_state': 'on'},}}

curl -i -X POST -H 'Content-Type: application/json' -u admin:**** -

H 'Accept: application/json' --cacert /var/www/mercury/mercury-ca.crt

-d

'{'status': 'Reboot', 'force_op': False, 'name': '<Node UUID>'}'

https://172.31.231.17:8445/v1/nodes

/node_power_status

 21

Reboot Status:

Use the following two commands, to get the reboot status of the node:

List Openstack Configuration Command

Request:

Response:

Cluster Recovery

Command:

curl -i -X POST -H 'Content-Type: application/json' -u admin:**** -

H 'Accept: application/json' --cacert /var/www/mercury/mercury-ca.crt

-d 'None' https://172.31.231.17:8445/v1/nodes/reboot_status

curl -i -X GET -H 'Content-Type: application/json' -u admin:**** -H

'Accept: application/json'

--cacert /var/www/mercury/mercury-ca.crt

https://172.31.231.17:8445/v1/nodes

You can find the UUID of the node from the list nodes command.z

curl -i -X GET -H 'Content-Type: application/json' -u admin:**** -H

'Accept: application/json'

--cacert /var/www/mercury/mercury-ca.crt

https://172.31.231.17:8445/v1/openstack_config

{"KEYSTONE_VERBOSE_LOGGING": true, "GNOCCHI_VERBOSE_LOGGING": true,

. . }

 22

Response:

Last-Run-Status Command

Command:

Response:

Reconfigure Regenerate Secrets

Command:

{'created_at': '2019-01-07 08:27:56+00:00', 'updated_at': '2019-01-

07 08:28:03+00:00',

'reboot_required': False, 'update_status': False,

'current_op_logs': 'https://172.31.231.17:8008/mercury/79c402d2-f156-

4ba2-8f17-ec109401a538', 'current_op_status': 'OperationRunning',

'insight_monitor_status': 'Running', 'current_op_name':

'Generate_ssh_keys', 'current_op_monitor':

'Runner_Op_Generate_ssh_keys'}

curl -i -X POST -H 'Content-Type: application/json' -u admin:**** -

H 'Accept:

application/json' --cacert /var/www/mercury/mercury-ca.crt -d

'{'action': {'cluster-recovery': {'run-disk- checks': False}}}'

https://172.31.231.17:8445/v1/misc

{'uuid': 'ae3be813-4fae-4510-8467-fab09ac60d2b', 'created_at':

'2019-01-07T08:17:01.229976+00:00', 'updated_at': None,

'operation_status': 'OperationScheduled', 'operation_logs': '',

'operation_name': {'cluster-recovery':

{'run-disk-checks': False}}}

curl -i -X GET -H 'Content-Type: application/json' -H

'Authorization: ****' -H 'Accept: application/json' - H 'User-Agent:

python-ciscovimclient' --cacert

/var/www/mercury/mercury-ca.crt

https://172.31.231.17:8445/v1/op_info

 23

Response:

Reconfigure Set Password

Request:

Response:

Reconfigure Set Openstack Configuration

Command:

curl -i -X POST -H 'Content-Type: application/json' -u admin:**** -

H 'Accept: application/json' --cacert /var

/www/mercury/mercury-ca.crt -d

'{'action': {'regenerate_secrets': '****', 'reconfigure': True}}'

https://172.31.231.17:8445/v1/misc

{'uuid': '83cf2700-275f-4c18-a900-96c36c4987aa', 'created_at':

'2019-01-07T08:36:19.279425+00:00',

'updated_at': None, 'operation_status': 'OperationScheduled',

'operation_logs': '',

'operation_name': {'regenerate_secrets': '****', 'reconfigure':

True}}

curl -i -X POST -H 'Content-Type: application/json' -u admin:**** -

H 'Accept: application/json' --cacert /var

/www/mercury/mercury-ca.crt -d '{"action": {"setpassword":

{"HAPROXY_PASSWORD": "*****"}, "reconfigure": true}}'

https://172.31.231.17:8445/v1/misc

{"uuid": "16d89b9e-cadc-4467-b1d8-5a8a60171d90", "created_at":

"2020-06-30T16:51:17.316126+00:00",

"updated_at": null, "operation_status": "OperationScheduled",

"operation_logs": "", "operation_name": "{\" setpassword\":

{\"HAPROXY_PASSWORD\": \"****\"}, \"reconfigure\": true}"}

 24

Response

Reconfigure CIMC Password

1. List down the setupdata and find UUID of active setupdata using the following command:

Response:

 2. Put the content of setupdata with new CIMC Password using the following command:

curl -i -X POST -H 'Content-Type: application/json' -u admin:**** -

H 'Accept:

application/json' --cacert /var/www/mercury/mercury-ca.crt -d

'{'action': {'reconfigure': True,

'setopenstackconfigs':{'GNOCCHI_VERBOSE_LOGGING': True}}}'

https://172.31.231.17:8445/v1/misc

{'uuid': '5bbbeff7-76df-4444-a38a-8819a8b579e4', 'created_at':

'2019-01-07T08:54:13.733254+00:00', 'updated_at': None,

'operation_status': 'OperationScheduled', 'operation_logs': '',

'operation_name': {'setopenstackconfigs':

{'GNOCCHI_VERBOSE_LOGGING': True}, 'reconfigure': True}}

curl -i -X GET -H 'Content-Type: application/json' -u admin:**** -H

'Accept: application/json' --cacert /var/www/mercury/mercury-ca.crt

https://172.31.231.17:8445/v1

/setupdata

curl -i -X PUT -H 'Content-Type: application/json' -u

admin:**** -H 'Accept: application/json' --cacert

/var/www/mercury/mercury-ca.crt -d '{'meta': {}, 'name':

'NEWSETUPDATA', 'jsondata':

{'external_lb_vip_address': '172.29.86.9' . . .}, 'uuid':

'3e97381e-4b1c-41a2-9af4-f970a1f1493a'}'

https://172.31.231.17:8445/v1/setupdata/3e97381e-4b1c-41a2-9af4-

f970a1f1493a

 25

3.Post on Misc API using the below command:

Request:

Response:

curl -i -X POST -H 'Content-Type: application/json' -u

admin:**** -H 'Accept: application/json' --cacert

/var/www/mercury/mercury-ca.crt -d '{'action':

{'reconfigure_cimc_password': True, 'reconfigure': True}}'

https://172.31.231.17:8445/misc

{'uuid': 'f00e1ae0-5674-4218-b1de-8995c9f9c546', 'created_at':

'2019-01-07T09:19:40.210121+00:00', 'updated_at': None,

'operation_status': 'OperationScheduled', 'operation_logs': '',

'operation_name':

{'reconfigure_cimc_password': '****', 'reconfigure': True}}

 26

API Resources
• Setupdata

• Install resource

• Nodes

• Replace a controller

• Offline Validation

• Update Secrets

• OpenStack Configs

• Version

• Health of the Management Node

• Hardware Information

• Release Mapping Information

Setupdata

REST wrapper for setupdata. Provides methods for listing, creating, modifying, and deleting
setupdata.
Retrieving the setupdata

Resource URI

Verb URI

GET /v1/setupdata

Example
JSON Request:

Curl Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Rest API admin password> -H 'Accept:
application/json' -H 'User-Agent: python-ciscovimclient' --cacert “<mercury-ca.crt path>”
https://<br_api>:8445/setupdata

JSON Response

GET /v1/setupdata Accept: application/json

 27

Creating Setupdata

Resource URI

Verb URI

POST /v1/setu

pdata

 Example
JSON Request

Curl Command:

curl -g -i -X POST -H 'Content-Type: application/json' -u admin:<Rest API admin passwd> -H 'Accept: application/json' -H 'User-
Agent: python-ciscovimclient' --cacert "<mercury-ca.crt path>" -d '{"meta": {}, "name": "NEWSETUPDATA", "jsondata": { }}'
https://<br_api>:8445/setupdata

JSON Response

POST /v1/setupdata Accept: application/json

{ "name":"GG34",

"uuid": "123"

"meta":{

"user":"root"

},

"jsondata":{

.......

}

}

200 OK

Content-Type: application/json

{"setupdatas": [{

"status": "Active",

"name":"GG34",

"uuid": "123"

"meta":{

"user":"root"

},

"jsondata":{

.......

}

}]}

 28

Retrieving a Single Setupdata

Example

Resource URI

Verb URI

GET /v1/setupdata/(id)

Property:
id—The ID of the setupdata that you want to retrieve.

JSON Request
GET /v1/setupdata/123

Accept: application/json

Curl Command:curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Rest API
admin password> -H 'Accept: application/json' -H 'User-Agent: python-ciscovimclient' --cacert
'<mercury-ca.crt path>' https://<br_api>:8445/setupdata/<setup data uuid>

201 OK

Content-Type: application/json

{

"status": "Active",

"name":"GG34",

"uuid": "123"

"meta":{

"user":"root"

},

"jsondata":{

.......

}

}

400 Bad Request

Content-Type: application/json

{

"debuginfo": null "faultcode":"Client" "faultstring": "Error"

}

409 CONFLICT

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client" "faultstring": "Error"

}

 29

JSON Response

Updating a Setupdata

Resource URI

Verb URI

PUT /v1/setupdata/(id)

Property:

id—The ID of the setupdata that you want to update. Example

Convert setupdata response generated from GET request to JSON format then update field required to edit

JSON Request

$ curl -i -X PUT \
 -H "Content-Type: application/json" \
 -H "Accept: application/json" \
 -u admin:<Rest API admin password> \
 --cacert "C:\certificates\mercury-ca.crt" \
 -d '{
 "name": "NEWSETUPDATA",
 "meta": {},
 "uuid": "<setupdata uuid>",
 "jsondata": {
 }

200 OK

Content-Type: application/json

{

"status": "Active",

"name":"GG34",

"uuid": "123"

"meta":{

"user":"root"

},

"jsondata":{

.......

}

}

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Setupdata could not be found."

}

PUT /v1/setupdata/123 Accept: application/json

 30

 <Updated setup data in JSON format>
 }' \
 https://<br_api>:8445/setupdata/<setupdata uuid>
JSON Response

Deleting a Setupdata

Resource URI

Verb URI

DELETE /v1/setupdata/(id)

Property:

id—The ID of the setupdata that you want to delete. Example

Get active setupdata UUID from GET request
JSON Request

200 OK

Content-Type: application/json

{

"status": "Active",

"name":"GG34",

"uuid": "123"

"meta":{

"user":"root"

},

"jsondata":{

.......

}

}

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Setupdata could not be found."

}

DELETE /v1/setupdata/123 Accept: application/json

 31

curl -g -i -X DELETE -H 'Content-Type: application/json' -u admin:<Rest API admin password> -H 'Accept:
application/json' -H 'User-Agent: python-ciscovimclient' --cacert "<mercury-ca.crt path>"
https://<br_api>:8445/setupdata/<setupdata uuid>

JSON Response

Install Resource

REST wrapper for install.

Provides methods for starting, stopping, and viewing the status of the installation process

Return a List of Installation

Resource URI

Verb URI

GET /v1/install

Example
JSON Request

JSON Response

204 NO CONTENT Returned on success

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Setupdata could not be found."

}

400 BAD REQUEST

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Setupdata cannot be deleted when it is being used

by an installation"

}

GET /v1/install

Accept: application/json

 32

Create an Installation

Resource URI

Verb URI

POST /v1/install

Example
JSON Request

JSON Response

200 OK

Content-Type: application/json

{"installs": [{

"ceph": "Skipped",

"uuid": "123",

"setupdata": "345",

"vmtpresult": "{

"status": "PASS",

"EXT_NET": []

}",

"baremetal": "Success", "orchestration": "Success",

"validationstatus": "{ "status": "PASS", "Software_Validation": [],

"Hardware_Validation": []

}",

"currentstatus": "Completed", "validation": "Success", "hostsetup":

"Success", "vmtp": "Skipped"

}]

}

GET /v1/install Accept: application/js

{

"setupdata": "123", "stages": ["validation", "bootstrap",

"runtimevalidation", "baremetal", "orchestration", "hostsetup",

"ceph", "vmtp"

]

}

 33

Retrieve the Installation

Resource URI

Verb URI

GET /v1/inst

all/{id}

Property:

id—The ID of the installation that you want to retrieve. Example
 JSON Request
 GET /v1/install/345

Accept: application/js

JSON Response

201 CREATED

Content-Type: application/json

{

"ceph": "Skipped",

"uuid": "123",

"setupdata": "345",

"vmtpresult": "{

"status": "PASS",

"EXT_NET": []

}",

"baremetal": "Success", "orchestration": "Success",

"validationstatus": "{ "status": "PASS", "Software_Validation": [],

"Hardware_Validation": []

}",

"currentstatus": "Completed", "validation": "Success", "hostsetup":

"Success", "vmtp": "Skipped"

}

409 CONFLICT

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Install already exists"

}

 34

Stop the Installation

Resource URI

Verb URI

DELETE /v1/install/{id}

Property:

id—The ID of the installation that you want to stop.

Example

JSON Request

200 OK

Content-Type: application/json

{

"ceph": "Skipped",

"uuid": "123",

"setupdata": "345",

"vmtpresult": "{

"status": "PASS",

"EXT_NET": []

}",

"baremetal": "Success", "orchestration": "Success",

"validationstatus": "{ "status": "PASS", "Software_Validation": [],

"Hardware_Validation": []

}",

"currentstatus": "Completed", "validation": "Success", "hostsetup":

"Success", "vmtp": "Skipped"

}

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Install doesn't exists"

}

 35

JSON Response

 Nodes

 Getting a List of Nodes

 Resource URI
Verb

URI

GET

/v1/nodes

Example

Curl Command:

curl -i -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' -H 'CVIM-API-
Version: 4.0.0' -H 'User-Agent: python-ciscovimclient' -u admin:<Rest API Password> --cacert
"C:\<mercury-ca.crt path>" https://<Pod IP>:8445/nodes

JSON Request

JSON Response

DELETE /v1/install/345

Accept: application/js

Get /v1/nodes

Accept: application/js

204 NO CONTENT

Content-Type: application/json

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client" "faultstring":

"Install doesn't exists"

}

 36

Add New Nodes

The nodes are in compute or block_storage type. Before adding the nodes to the system, the
name of the nodes and other necessary information like cimc_ip and rackid must be updated in the
setupdata object. If the setupdata object is not updated, the post call does not allow you to add the
node. Resource URI

Verb URI

POST /v1/nodes

Example

CURL Command:
curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent:
python-ciscovimclient" -u admin:<Password> --cacert </mercury-ca.crt path> -d @payload.json
https://<POD IP>:8445/setupdata/<UUID>
JSON Request

200 OK

Content-Type: application/json

{

"nodes": [[

"status": "Active",

"uuid": "456",

"setupdata": "123",

"node_data": "{

"rack_info": { "rack_id": "RackA"

},

"cimc_info": {

"cimc_ip": "10.10.10.10"

},

"management_ip": "7.7.7.10"

}",

"updated_at": null, "mtype": "compute",

"install": "345", "install_logs": "logurl",

"created_at":"2016-0710T06:17:03.761152",

"name": " compute-1"

}

]

}

 37

JSON Response

Retrieve Information about a Particular Node

Resource URI

Verb URI

GET /v1/nodes{id}

Property:

id—The ID of the node that you want to retrieve.

Example

CURL Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Rest Api Password> -H
'Accept: application/json' -H 'User-Agent: python-ciscovimclient' --cacert "<mercury-ca.crt path"
https://<POD IP>:8445/v1/nodes

201 CREATED

Content-Type: application/json

{

"status": "ToAdd",

"uuid": "456",

"setupdata": "123",

"node_data": "{

"rack_info": { "rack_id": "RackA"

},

"cimc_info": { "cimc_ip": "10.10.10.10"

},

"management_ip": "7.7.7.10"

}",

"updated_at": null, "mtype": "compute",

"install": "345", "install_logs": "logurl",

"created_at":"2016-0710T06:17:03.761152",

"name": " compute-1"

}

POST /v1/nodes

Accept: application/js

{

"name" : "compute-5"

}

 38

JSON Request

JSON Response

Remove a Node

The node to be deleted must be removed from the setupdata object. Once the setupdata
object is updated, you can safely delete the node. The node object cannot be deleted until it calls the
remote node backend and succeeds.

Resource URI

Verb URI

DELETE /v1/nodes{id}

Property:

id—The ID of the node that you want to remove.

Example

200 OK

Content-Type: application/json

{

"status": "Active",

"uuid": "456",

"setupdata": "123",

"node_data": "{

"rack_info": { "rack_id": "RackA"

},

"cimc_info": { "cimc_ip": "10.10.10.10"

},

"management_ip": "7.7.7.10"

}",

"updated_at": null, "mtype": "compute",

"install": "345", "install_logs": "logurl",

"created_at":"2016-0710T06:17:03.761152",

"name": " compute-1"

}

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Node doesn't exists"

}

POST /v1/nodes

Accept: application/js

 39

CURL Command:
curl -i -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' -H 'CVIM-API-Version:
4.0.0' -H 'User-Agent: python-ciscovimclient' -u admin:<Rest API Password> --cacert "C:\<mercury-
ca.crt path>" https://<POD IP>:8445
JSON Request

JSON Response

To clear the database and delete the entries in the nodes, the delete API is called with special
parameters that are passed along with the delete request. The JSON parameters are in the following
format.

JSON Request

JSON Response

DELETE /v1/nodes/456 Accept: application/js

{

"clear_db_entry":"True"\

}

DELETE /v1/nodes/456

Accept: application/js

204 ACCEPTED

Content-Type: application/json

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Node doesn't exists"

}

 40

Replace a Controller

Resource URI

Verb URI

PUT /v1/nodes{id}

Property:

id—The ID of the controller that you want to replace.

Example

CURL Command:

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent: python-
ciscovimclient" -u admin: --cacert "C:<mercury-ca.crt pth>" -d '{"name": "<controller node name to be replaced>",
"status": "ToReplace", "force_op": false, "skip_vmtp": false}' https://<br_api ip>:8445/nodes/UUID

JSON Request

This is done only if the node is deleted from the REST API database. The failure reason of the node must
be rectified manually apart from the API. True is a string and not a boolean in the preceding line.

PUT /v1/nodes/456 Accept: application/js

204 ACCEPTED

Content-Type: application/json

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Node doesn't exists"

}

 41

JSON Response

Offline Validation

REST wrapper does the offline validation of setupdata. Rest Wrapper only does the Software
Validation of the input setupdata.

Create an Offline Validation Operation

Resource URI

Verb URI

POST /v1/offlinevalidation

Example

CURL Command:

curl -g -i -X POST -H "Content-Type: application/json" -u admin:<Password> -H "Accept:
application/json" --cacert 'C:\<mercury-ca.crt payh>' -d "{\"jsondata\": $(cat setup_data.json)}"
https://<Pod IP>:8445/v1/offlinevalidation

JSON Request

JSON Response

200 OK

Content-Type: application/json

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Node doesn't exists"

}

POST /v1/offlinevalidation Accept: application/json

{

"jsondata": "."

}

 42

Retrieve the Results of Offline Validation

Resource URI

Verb URI

GET /v1/offlinevalidation

Property:

id—The ID of the node you want to retrieve.

Example

Curl Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Password> -H 'Accept:
application/json' -H 'User-Agent: python-ciscovimclient' --cacert 'C:<mercury-ca.crt path>'
https://<Pod IP>:8445/v1/offlinevalidation/<UUID>
JSON Request

201 CREATED

Content-Type: application/json

{

"status": "NotValidated",

"uuid": "bb42e4ba-c8b7-4a5c-98b3-1f384aae2b69", "created_at":

"2016-02-03T02:05:28.384274", "updated_at": "2016-02-

03T02:05:51.880785",

"jsondata": "{}", "validationstatus": { "status": "PASS",

"Software_Validation": [], "Hardware_Validation": []

}

}

GET /v1/offlinevalidation/789 Accept: application/json

 43

JSON Response

Update

Start an Update Process

Resource URI
Verb

URI

POST

/v1/update

Parameters:

 fileupload - "tar file to upload"

 filename - "Filename being uploaded"

Example.
JSON Request

200 OK

Content-Type: application/json

{

"status": " ValidationSuccess",

"uuid": "bb42e4ba-c8b7-4a5c-98b3-1f384aae2b69", "created_at":

"2016-02-03T02:05:28.384274", "updated_at": "2016-02-

03T02:05:51.880785",

"jsondata": "{}", "validationstatus": { "status": "PASS",

"Software_Validation": [], "Hardware_Validation": []

}

}

curl -sS -X POST --form "fileupload=@Test/installer.good.tgz" --

form "filename=installer.good.tgz" https://10.10.10.8445/v1/update

This curl request is done as a form request.

 44

JSON Response

Roll Back an Update

Resource URI

Verb URI

PUT /v1/update

Example
JSON Request

200 OK

Content-Type: application/json

{

"update_logs": "logurl", "update_status": "UpdateSuccess",

"update_filename": "installer-4579.tgz", "created_at": "2016-07-

10T18:33:52.698656", "updated_at": "2016-07-10T18:54:56.885083"

}

409 CONFLICT

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client" "faultstring": "Uploaded file

is not in tar format"

}

PUT /v1/update

Accept: application/json

{

"action":"rollback"

}

 45

JSON Response

Commit an Update

Resource URI

Verb URI

PUT /v1/update

Example
JSON Request

JSON Response

Retrieve the Details of an Update

Resource URI

Verb URI

GET /v1/update

Example

PUT /v1/update

Accept: application/json

{

"action":"commit"

}

200 OK

Content-Type: application/json

{

"update_logs": "logurl", "update_status": "ToCommit",

"update_filename": "installer-4579.tgz", "created_at": "2016-07-

10T18:33:52.698656", "updated_at": "2016-07-10T18:54:56.885083"

}

200 OK

Content-Type: application/json

{

"update_logs": "logurl", "update_status": "ToRollback",

"update_filename": "installer-4579.tgz", "created_at": "2016-07-

10T18:33:52.698656", "updated_at": "2016-07-10T18:54:56.885083"

}

 46

JSON Request

JSON Response

Secrets

Retrieve the list of secrets that are associated with the OpenStack Setup.

You can retrieve the set of secret passwords that are associated with the OpenStack setup using the
preceding api. This gives the list of secrets for each service in OpenStack.

Resource URI

Verb URI

GET /v1/secrets

Example

Curl Command

curl -i -X GET \-H "Accept: application/json" \-u admin:<Password> \--cacert /<mercury-ca.crt path>
\"https://<Pod Ip:8445>/v1/secrets
JSON Request

GET /v1/secrets

Accept: application/json

GET /v1/update

Accept: application/json

200 OK

Content-Type: application/json

{

"update_logs": "logurl", "update_status": "UpdateSuccess",

"update_filename": "installer-4579.tgz",

"created_at": "2016-07-10T18:33:52.698656", "updated_at": "2016-07-

10T18:54:56.885083"

}

 47

JSON Response

OpenStack Configs

Retrieve the list of OpenStack configs associated with the OpenStack Setup

You can retrieve the set of OpenStack configs associated with the OpenStack setup using the
preceding api. This gives the current settings of different configurations such as verbose logging and
debug logging for different OpenStack services.

URI

/v1/openstack_config

Curl Command

curl -i -X GET \-H "Content-Type: application/json" \-H "Accept: application/json" \-u
admin:<Password>\cacert/<mercuryca.crtpath>\https://<PodIP>:8445/v1/openstack_config

JSON Request

GET /v1/openstack_config

 Accept: application/json

JSON Response

200 OK

Content-Type: application/json

{

"HEAT_KEYSTONE_PASSWORD": "xxxx", "CINDER_KEYSTONE_PASSWORD":

"xxxxx",

....

....

"RABBITMQ_PASSWORD": "xxxxx"

}

200 OK

Content-Type: application/json

{

"CINDER_DEBUG_LOGGING": false, "KEYSTONE_DEBUG_LOGGING": false,

....

....

"NOVA_VERBOSE_LOGGING": true

}

 48

Version

Retrieve the version of the Virtualized Infrastructure Manager.

Resource URI

Verb URI

GET /v1/version

Example
Curl Command

curl -i -X GET -H 'Accept: application/json' -u admin:<Rest APi admin passwd> --cacert <mercury cert path>

https://<br_api ip>:8445/v1/version
JSON Request

GET /v1/version Accept: application/json

JSON Response
200 OK

Content-Type: application/json

{"version": "1.9.1"}

Health of the Management Node

Retrieve the health of the Management node

This API is used to retrieve the health of the management node. It checks various parameters such
as partitions, space and so on. Resource URI

Verb URI

GET /v1/health

Example
Curl command:
curl -i -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' -H 'CVIM-API-Version: 4.0.0' -H 'User-
Agent: python-ciscovimclient' -u admin:<rest api admin passwd> --cacert "<mercury cert path>" https://<br_api
ip>:8445/v1/health

JSON Request

GET /v1/health

Accept: application/json

JSON Response

200 OK

Content-Type: application/json

{

"status": "PASS", "pod_status": { "color": "BLUE", "version":

"<VERSION_NO.>"

},

"insight_version": "<VERSION_NO.>"

}

 49

Color signifies the health of the pod for Insight:

• Grey signifies that no installation is kicked off on the pod.

• Green signifies that everything is in Good state and cloud installation is active.

• Blue signifies that some operation is running on the pod.

• Red signifies that the pod is in critical state, and you might need TAC support to recover the
pod.

• Amber indicates a warning if a pod management (Add/Remove/Replace) operation failed.

Hardware Information

REST wrapper to do hardware information of setupdata. This returns the hardware information of all
hardware available in the setupdata.

Create a HWinfo Operation

Resource URI

Verb URI

GET /v1/hwinfo

Example
Curl command:
curl -k -u admin:<rest api admin passwd> -H "Accept: application/json" -H "Content-Type: application/json" -X GET

"https://<br_api>:8445/v1/hwinfo"
JSON Request

POST /v1/hwinfo Accept: application/json

{

"setupdata":"c94d7973-2fcc-4cd1-832d-453d66e6b3bf"

}

JSON Response

201 CREATED

Content-Type: application/json

{

"status": "hwinfoscheduled",

"uuid": "928216dd-9828-407b-9739-8a7162bd0676",

"setupdata": "c94d7973-2fcc-4cd1-832d-453d66e6b3bf", "created_at": "2017-03-

19T13:41:25.488524", "updated_at": null, "hwinforesult": ""

}

Retrieve the Results of Hwinfo Operation

Resource URI

Verb URI

GET /v1/hwinfo/{id}

Property:

id—The ID of the node you want to query.

 50

Example
Curl command:
curl -k -u admin:<rest api admin passwd> -H "Accept: application/json" -H "Content-Type: application/json" -X GET
https://<br_api>:8445/v1/hwinfo

JSON Request

GET /v1/hwinfo/789 Accept: application/json

JSON Response

200 OK

Content-Type: application/json

{

"status": "hwinfosuccess",

"uuid": "928216dd-9828-407b-9739-8a7162bd0676",

"setupdata": "c94d7973-2fcc-4cd1-832d-453d66e6b3bf", "created_at": "2017-03-

19T13:41:25.488524", "updated_at": "2017-03-19T13:42:05.087491",

"hwinforesult": "{\"172.29.172.73\": {\"firmware\": …………..

…………

……………..

}

Release Mapping Information

This api is used to see the list of Features included and list of options which can be reconfigured in
the Openstack Setup.
Retrieve the release mapping information

Resource URI

Verb URI

GET /v1/releasemapping

Curl Command
curl -i -X GET -H 'Accept: application/json' -u admin:<rest api admin paswd> --cacert <mercury cert path>

https://<br_api ip>:8445/v1/releasemapping
JSON Request

GET /v1/releasemapping Accept: application/json

JSON Response

200 OK
Content-Type: application/json [
{
"SWIFTSTACK": {
"feature_status": true,
],
"desc": "swift stack feature"
}
},........
..............
}

 51

POST Install Operations

The following are the post install operations that can be performed, after the successful installation of
OpenStack. It uses a common api.

Example:

1. reconfigure

2. reconfigure -regenerate passwords

3. reconfigure -setpasswords,setopenstack_configs

4. reconfigure -alertmanager_config, -alerting_rules_config

5. check-fernet-keys

6. resync-fernet-keys

7. rotate-fernet-keys

Create a Post install Operation

Resource URI

Verb URI

POST /v1/misc

Examples:

JSON Request

POST /v1/misc

Accept: application/json

{"action": {"reconfigure": true}}

Curl command

curl -i -X POST --insecure -H 'Content-Type: application/json' -u admin:<Rest api admin passwd> -H 'Accept:
application/json' -d '{"action": {"reconfigure": true}}' https://<br_api ip>:8445/v1/misc

JSON Response

201 CREATED

Content-Type: application/json

{

"uuid": "7e30a671-bacf-4e3b-9a8f-5a1fd8a46733", "created_at": "2017-03-

19T14:03:39.723914", "updated_at": null,

"operation_status": "OperationScheduled", "operation_logs": "",

"operation_name": "{"reconfigure": true}"

}

JSON Request

POST /v1/misc

Accept: application/json

{"action": {"reconfigure": true, "alertmanager_config": <json_config>}}

JSON Response

201 CREATED

Content-Type: application/json

{

 52

"uuid": "68b67265-8f09-480e-8608-b8aff77e0ec7", "created_at": "2019-01-

09T16:42:11.484604+00:00",

"updated_at": null,

"operation_status": "OperationScheduled", "operation_logs": "",

"operation_name": "{"alertmanager_config": <json_config>, "reconfigure": true}"

}

Retrieve a Status of the Post Install Operation

Resource URI

Verb URI

GET /v1/misc

Example

JSON Request
GET /v1/misc

Accept: application/json

Curl command:

curl -i -X GET -H "Accept: application/json" -u admin:<rest api admin passwd> --cacert "<mercury
cert path>" https://<br_api ip>:8445/v1/misc

JSON Response
201 CREATED

Content-Type: application/json

{

"uuid": "7e30a671-bacf-4e3b-9a8f-5a1fd8a46733", "created_at": "2017-03-

19T14:03:39.723914", "updated_at": "2017-03-19T14:03:42.181180",

"operation_status": "OperationRunning", "operation_logs":

"xxxxxxxxxxxxxxxxx", "operation_name": "{\"reconfigure\": true}"

}

In VIM Rest APIs exist to support NFVBench, query hardware information and to get a list of optional
and mandatory features that the pod supports.

Following are the API details:

NFVBench Network Performance Testing

Create NFVBench Run

Starts the network performance test with provided configuration.

Verb URI

Post v1/nfvbench/ create_ndr_pdr_test

Example

JSON Request

 53

Curl command:

POST Request URL
/v1/nfvbench/create_fixed_rate_test JSON Request:

{"nfvbench_request":

{

"duration_sec": 20, "traffic_profile": [

{

"name": "custom", "l2frame_size": [

"64",

"IMIX", "1518"

]

}

],

"traffic": { "bidirectional": true, "profile": "custom"

},

"flow_count": 1000

}

}

JSON Response
201 CREATED

Content-Type: application/json

{

"status": "not_run", "nfvbench_request":

'{

"duration_sec": 20, "traffic_profile": [

{

"name": "custom", "l2frame_size": ["64",

"IMIX", "1518"

]

}

],

"traffic": { "bidirectional": true, "profile": "custom"

},

"flow_count": 1000

}',

"created_at": "2017-08-16T06:14:54.219106",

"updated_at": null, "nfvbench_result": "", "test_name": "Fixed_Rate_Test"

}

REST API To Create Fixed Rate Test

Verb URI

Post v1/nfvbench/ create_ndr_pdr_test

Example

 54

JSON Request

POST Request URL
/v1/nfvbench/create_fixed_rate_test JSON Request:

{"nfvbench_request":

{

"duration_sec": 20, "traffic_profile": [

{

"name": "custom", "l2frame_size": [

"64",

"IMIX", "1518"

]

}

],

"traffic": { "bidirectional": true, "profile": "custom"

},

"flow_count": 1000

}

}

Curl command:

curl -k -u admin:<rest api admin passwd> \ -H "Accept: application/json" \

 -H "Content-Type: application/json" \

 -X POST "https://<br_api>:8445/v1/nfvbench/create_fixed_rate_test" \

 -d '{

 "nfvbench_request": {

 "duration_sec": 20,

 "traffic_profile": [

 {

 "name": "custom",

 "l2frame_size": [

 "64",

 "IMIX",

 "1518"

]

 }

],

 55

 "traffic": {

 "bidirectional": true,

 "profile": "custom"

 },

 "flow_count": 1000

 }

 }'
JSON Response

201 CREATED

Content-Type: application/json

{

"status": "not_run", "nfvbench_request":

'{

"duration_sec": 20, "traffic_profile": [

{

"name": "custom", "l2frame_size": ["64",

"IMIX", "1518"

]

}

],

"traffic": { "bidirectional": true, "profile": "custom"

},

"flow_count": 1000

}',

"created_at": "2017-08-16T06:14:54.219106",

"updated_at": null, "nfvbench_result": "", "test_name": "Fixed_Rate_Test"

}

Status Polling

Polling of NFVbench run status which is one of nfvbench_running, nfvbench_failed,
nfvbench_completed.

Resource URI

Verb URI

GET v1/nfvbench/<test_name>

REST API To Get Fixed Rate Test Result

GET Request URL

/v1/upgrade/get_fixed_rate_test_result

 56

JSON Request:

Check If NFVbench Test is running

200 OK

Content-Type: application/json

{

"status": "nfvbench_running",

"nfvbench_request": '{"traffic": {"bidirectional": true, "profile":

"custom"}, "rate": "1000000pps",

"traffic_profile": [{"l2frame_size": ["1518"], "name": "custom"}],

"duration_sec": 60, "flow_count": 1000}', "nfvbench_result": ""

"created_at": "2017-05-30T21:40:40.394274", "updated_at": "2017-05-

30T21:40:41.367279",

}

JSON Response

Check If NFVbench test is completed:
200 OK

Content-Type: application/json

{

"status": "nfvbench_completed",

"nfvbench_request": '{"traffic": {"bidirectional": true, "profile":

"custom"}, "rate": "1000000pps", "traffic_profile": [{"l2frame_size": ["1518"],

"name": "custom"}], "duration_sec": 60, "flow_count": 1000}',

"nfvbench_result": '{"status": "PROCESSED", "message": {"date": "2017-08-15

23:15:04", "nfvbench_version": "0.9.3.dev2", }

"created_at": "2017-05-30T21:40:40.394274", "updated_at": "2017-05-

30T22:29:56.970779",

}

REST API to create NDR/PDR Test POST Request URL

JSON Request
/v1/nfvbench/create_ndr_pdr_test Accept: application/json

{"nfvbench_request":

{

"duration_sec": 20, "traffic_profile": [

{

"name": "custom", "l2frame_size": ["64",

"IMIX", "1518"

]

}

],

"traffic": { "bidirectional": true, "profile": "custom"

 57

},

"flow_count": 1000

}

}

JSON Response
201 CREATED

Content-Type: application/json

{

"status": "not_run", "nfvbench_request":

'{

"duration_sec": 20, "traffic_profile": [

{

"name": "custom", "l2frame_size": [

"64",

"IMIX", "1518"

]

}

],

"traffic": { "bidirectional": true, "profile": "custom"

},

"flow_count": 1000

}'

"created_at": "2017-08-16T07:18:41.652891",

"updated_at": null, "nfvbench_result": "", "test_name": "NDR_PDR_Test"

}

REST API To Get NDR/PDR Test Results

GET Request URL
/v1/ nfvbench/get_ndr_pdr_test_result

JSON Response:

If NFVbench NDR/PDR test is running:

200 OK

Content-Type: application/json

{

"status": "nfvbench_running", "nfvbench_request": '{"duration_sec": 20,

"traffic": {"bidirectional": true, "profile": "custom"},

"traffic_profile": [{"l2frame_size": ["64", "IMIX", "1518"], "name":

"custom"}], "flow_count": 1000}', "nfvbench_result": ""

"created_at": "2017-08-16T07:18:41.652891", "updated_at": "2017-09-

30T22:29:56.970779",

}

If NFVbench NDR/PDR test is completed:

200 OK

Content-Type: application/json

{

"status": "nfvbench_completed", "nfvbench_request": '{"duration_sec": 20,

"traffic": {"bidirectional": true, "profile": "custom"},

"traffic_profile": [{"l2frame_size": ["64", "IMIX", "1518"], "name":

"custom"}], "flow_count": 1000}',

 58

"nfvbench_result": '{"status": "PROCESSED",...}' "created_at": "2017-08-

16T07:18:41.652891", "updated_at": "2017-09-30T22:29:56.970779",

}

Curl command:

curl -i -X GET -H "Content-Type: application/json" -H "Accept: application/json" -u admin:<rest api admin

passwd> --cacert <mercury cert path> "https://<br_api ip>:8445/v1/nfvbench/get_ndr_pdr_test_result"

REST API to Get Node Hardware Information

Rest API helps you to get the hardware information of all the nodes in the:

• POD through CIMC/UCSM.

• Total Memory

• Firmware Info (Model, Serial Number)

• CIMC IP

GET Request URL
/v1/hwinfo Output Response

{

"hwinforesult": "{"control-server-2": {"memory": {"total_memory": "131072"},

"firmware": {"serial_number": "FCH1905V16Q", "fw_model": "UCSC-C220- M4S"},

"cimc_ip": "172.31.230.100", "storage": {"num_storage": 4},

"cisco_vic_adapters": {"product_name": "UCS VIC 1225"},

"cpu": {"number_of_cores": "24"}, "power_supply": {"power_state": "on"}}

…

}

REST API to Get Mandatory Features Mapping

Curl Command
curl -i -X GET \ -H "Accept: application/json" \-u admin:Password \--cacert /<mercury-ca.crt

path>\https://<POD IP>:8445/v1/releasemapping/mandatory_features_mapping

POST Request URL
/v1/releasemapping/mandatory_features_mapping JSON Response:

{

"mandatory": { "networkType": { "C": {

"feature_status": true,

"values": [{"name": "VXLAN/Linux Bridge", "value": "VXLAN/Linux Bridge"},],

"insight_label": "Tenant Network", "desc": "Tenant Network"

}, "B": {

"feature_status": true,

"values": [{"name": "VXLAN/Linux Bridge", "value": "VXLAN/Linux Bridge"},],

"insight_label": "Tenant Network", "desc": "Tenant Network"

}

},

 59

"cephMode": {

"all": { "feature_status": true,

"values": [{"name": "Central", "value": "Central"},], "insight_label": "Ceph

Mode", "desc": "Ceph Mode"

}

},

"podType": {

"C": {

"feature_status": true,

"values": [{"name": "Fullon", "value": "fullon"},], "insight_label": "POD

Type", "desc": "POD Type"

}, "B": {

"feature_status": true,

"values": [{"name": "Fullon", "value": "fullon"},], "insight_label": "POD

Type", "desc": "POD Type"

}

},

"installMode": { "all": { "feature_status": true,

"values": [{"name": "Connected", "value": "connected"},], "insight_label":

"Install Mode", "desc": "Install Mode"

}

}

},

"platformType": [{"name": "B-series", "value": "B"}, {"name": "C-series",

"value": "C"}], "postinstalllinks": {

"view_cloudpulse": {"alwayson": true, "feature_status": true,

"platformtype": "all", "insight_label": "Run VMTP", "desc": "Cloudpluse"},

"password_reconfigure": {"alwayson": true, "feature_status": true,

"platformtype": "all", "insight_label": "Reconfigure Passwords", "desc":

"Reconfigure Passwords"}

}

}

REST API to Get Optional Features Mapping

Curl Command:
curl -i -X GET \-H "Accept: application/json" \ -u admin:Password \ --cacert /<mercury-ca.crt path>\
https://<POD IP>:8445/v1/releasemapping/optional_features_mapping

POST Request URL
/v1/releasemapping/optional_features_mapping JSON Response: [

{

"SWIFTSTACK": {

"feature_status": true, "insight_label": "Swiftstack",

"repeated_redeployment": true, "reconfigurable": ["cluster_api_endpoint",

"reseller_prefix", "admin_password", "protocol"],

"desc": "swift stack feature"

}

 60

},

{

"heat": {

"feature_status": true, "insight_label": "Heat", "repeated_redeployment":

false, "reconfigurable": ["all"], "desc": "Openstack HEAT service"

}

},

. other features

]

Cloud Sanity Information

REST wrapper to run cloud-sanity test suites. The cloud-sanity extension to the VIM REST API
enables support for managing cloud-sanity test actions.

Create a cloud-sanity Test

Verb URI

Post /v1/cloud-sanity/create

Example

Curl Command:

curl -i -X POST /-H "Accept: application/json" \-H "Content-Type: application/json" \-u
admin:<Password>\cacert/<mercuryca.crt path>\ https://<Pod IP>:8445/v1/cloudsanity/create \\-d

'{"cloudsanity_request": {"command": "create","action": "test","test_name": "cephmon","uuid": "<UU
ID of the node>"}}
JSON Request

POST /v1/cloudsanity/create Accept: application/json

'{"cloudsanity_request": {"command": "create", "action": "test", "test_name":

"cephmon", "uuid": ""}}'

test_name can be all,management,control,compute,cephmon,cephosd

JSON Response

201 Created

{

'cloudsanity_request': "{u'action': u'test', u'command': u'create', u'uuid':

'5dff1662-3d33-4901-808d-479927c01dde', u'test_name': u'cephmon'}",

'cloudsanity_result': '',

'created_at': '2018-01-26T20:32:20.436445',

'status': 'not_run', 'test_name': 'cephmon', 'updated_at': ''

}

Retrieve a Status of the Post Install Operation

Resource URI

Verb URI

GET /v1/misc

Example:

CURL Command:

 61

curl -i -X GET \-H "Accept: application/json" \-u admin:<Password> \--cacert /<mercury-ca.crt
path> \https://<Pod IP>:8445/v1/misc

JSON Request

GET /v1/misc

Accept: application/json

JSON Response

201 CREATED

Content-Type: application/json

{

"uuid": "7e30a671-bacf-4e3b-9a8f-5a1fd8a46733", "created_at": "2017-03-

19T14:03:39.723914", "updated_at": "2017-03-19T14:03:42.181180",

"operation_status": "OperationRunning", "operation_logs":

"xxxxxxxxxxxxxxxxx", "operation_name": "{\"reconfigure\": true}"

}

In VIM Rest APIs exist to support NFVBench, query hardware information and to get a list of optional
and mandatory features that the pod supports. Following are the API details:
JSON Response

200 OK

Content-Type: application/json [

{

"SWIFTSTACK": {

"feature_status": true,

],

"desc": "swift stack feature"

}

},........

..............

}

List Specific cloud-sanity Test Results

Verb URI

GET /v1/cloud-sanity/list/?test_name={all, management,

control,compute,cephmon,cephosd}

CURL Command:

curl -i -X GET \-H "Accept: application/json" \-u admin:<Password> \--cacert /<mercury-ca.crt
path>\https://<POD IP>:8445/v1/cloudsanity/list/?test_name=cephmon

JSON Request

GET /v1/cloudsanity/list/?test_name=cephmon Accept: application/json

JSON Response

200 OK

{ '5dff1662-3d33-4901-808d-479927c01dde': { 'action': 'test', 'created_at':

'2018-01-26 20:32:20',

'status': 'cloudsanity_completed', 'test_name': 'cephmon', 'uuid':

'5dff1662-3d33-4901-808d-479927c01dde'},

 62

'797d79ba-9ee0-4e11-9d9e-47791dd05e07': { 'action': 'test', 'created_at':

'2018-01-25 12:05:11',

'status': 'cloudsanity_completed', 'test_name': 'cephmon', 'uuid':

'797d79ba-9ee0-4e11-9d9e-47791dd05e07'}}

Show cloud-sanity Test Results

Verb URI

GET /v1/cloud-sanity/show/?uuid=<uuid>

CURL Command:

curl -X GET "https://<host>:<port>/v1/cloudsanity/show/?uuid=<uu id>" \-H "Accept: application/json"
\-H "Authorization: Bearer <access_token>"

JSON Request

GET /v1/cloudsanity/show/?uuid=d0111530-ee3b-45df-994c-a0917fd18e11

JSON Response
200 OK

{ 'action': 'test', 'cloudsanity_request':

"{u'action': u'test', u'command': u'create',

u'uuid': 'd0111530-ee3b-45df-994c-a0917fd18e11', u'test_name': u'control'}",

'cloudsanity_result': '{"status": "PROCESSED",

"message": {"status": "Pass",

"message": "[PASSED] Cloud Sanity Control Checks Passed", "results":

{"control": {"ping_all_controller_nodes": "PASSED",

"check_rabbitmq_is_running": "PASSED", "check_rabbitmq_cluster_status":

"PASSED", "check_nova_service_list": "PASSED", "ping_internal_vip": "PASSED",

'created_at': '2018-01-26 18:46:23',

'status': 'cloudsanity_completed', 'test_name': 'control', 'updated_at':

'2018-01-26 18:47:58',

"disk_maintenance_raid_health": "PASSED", "check_mariadb_cluster_size":

"PASSED", "disk_maintenance_vd_health": "PASSED"}}}}', 'uuid': 'd0111530-ee3b-

45df-994c-a0917fd18e11'}

Delete cloud-sanity Test Results

Verb URI

DELETE /v1/cloud-sanity/delete/?uuid=<uuid>

Curl Command:

curl -X DELETE "https://<host>:<port>/v1/cloudsanity/delete/?uuid=<uu id>" \-H "Accept:
application/json" \-u admin:<password>

JSON Request
GET /v1/cloudsanity/delete/?uuid=444aa4c8-d2ba-4379-b035-0f47c686d1c4

JSON Response

200 OK

{

"status": "deleted",

 63

"message": "UUID 444aa4c8-d2ba-4379-b035-0f47c686d1c4 deleted from

database", "uuid": "444aa4c8-d2ba-4379-b035-0f47c686d1c4", "error": "None"

}

Disk Maintenance information

REST wrapper to query information about RAID disks on Pod nodes. This returns the RAID disk I
 nformation of all or a selection of RAID disks available in the Pod.

The disk management extension to the VIM REST API enables support for Disk Management
actions

 64

Create a Check Disk Operation

Resource URI

Verb URI

POST /v1/diskmgmt/check_disks

Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-
Type:application/json" \-X POST "https://<Pod IP>:8445/v1/diskmgmt/check_disks" \-d
'{"diskmgmt_request": {"command": "create","action": "check-disks","role": "control","locator":
"False","json_display": "False","servers": "","uuid": ""}}'

JSON Request

POST /v1/diskmgmt/check_disks Accept: application/json '{"diskmgmt_request":

{"command": "create", "action": "check-disks",

"role": "control",

"locator": "False", "json_display": "False", "servers": "", "uuid": ""}}'

JSON Response

201 Created

Content-Type: application/json

{

'action': 'check-disks',

'created_at': '2018-03-08T02:03:18.170849+00:00',

'diskmgmt_request': "{u'uuid': '0729bdea-cc19-440f-8339-ab21e76be84b',

u'json_display': u'False', u'servers': u'',

u'locator': u'False', u'role': u'control', u'action': u'check-disks',

u'command': u'create'}", 'diskmgmt_result': '', 'status': 'not_run',

'updated_at': 'None'

}

Create a Replace Disk Operation

Verb URI

POST /v1/diskmgmt/replace_disks

Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-Type:
application/json" \-X POST "https://<Pod IP>:8445/v1/diskmgmt/replace_disks" \-d
'{"diskmgmt_request": {"command": "create","action": "replace-disks","role": "control","locator":
"False","json_display": "False","servers": "","uuid": ""}}'

JSON Request

 65

POST /v1/diskmgmt/replace_disks Accept: application/json

'{"diskmgmt_request": {"command": "create",

"action": "replace-disks", "role": "control",

"locator": "False", "json_display": "False", "servers": "", "uuid": ""}}'

JSON Response

201 Created

Content-Type: application/json

{

"status": "not_run",

"diskmgmt_request": "{u'uuid': 'cb353f41-6d25-4190-9386-330e971603c9',

u'json_display': u'False', u'servers': u'', u'locator': u'False', u'role':

u'control',

u'action': u'replace-disks', u'command': u'create'}", "created_at": "2018-

03-09T12:43:41.289531+00:00",

"updated_at": "", "diskmgmt_result": "", "action": "replace-disks"}

List Check Disk Operation

Verb URI

GET /v1/diskmgmt/list/?action=

{check-disks,replace-disks

\&role={all,management,control,compute}

Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-X GET "https://<POD
IP>:8445/v1/diskmgmt/list/?action=check-disks&role=all"

JSON Request

GET /v1/diskmgmt/list/?action=check-disks\&role=all

JSON Response

200 OK

Content-Type: application/json

{

'0be7a55a-37fe-43a1-a975-cbf93ac78893': {'action': 'check-disks',

'created_at': '2018-03-05 14:45:45+00:00',

'role': 'compute',

'status': 'diskmgmt_completed', 'uuid':

'0be7a55a-37fe-43a1-a975-cbf93ac78893'},

'861d4d73-ffee-40bf-9348-13afc697ee3d': {'action': 'check-disks',

'created_at': '2018-03-05 14:44:47+00:00',

'role': 'control',

'status': 'diskmgmt_completed', 'uuid':

'861d4d73-ffee-40bf-9348-13afc697ee3d'},

'cdfd18c1-6346-47a2-b0f5-661305b5d160': {'action': 'check-disks',

'created_at': '2018-03-05 14:43:50+00:00',

'role': 'all',

'status': 'diskmgmt_completed', 'uuid':

 66

'cdfd18c1-6346-47a2-b0f5-661305b5d160'}

}

}

Show a Completed diskmgmt Operation

Verb URI

GET v1/diskmgmt/show/?uuid=<uuid>

Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-X GET "https://<Pod
IP>:8445/v1/diskmgmt/show/?uuid=<UUID>"

JSON Request

GET /v1/diskmgmt/show/?uuid=d24036c6-4557-4c12-8695-a92f6f9315ed

JSON Response

200 OK

Content-Type: application/json

{'action': 'check-disks',

'created_at': '2018-03-07 21:46:41+00:00',

'diskmgmt_request': "{u'uuid': 'd24036c6-4557-4c12-8695-a92f6f9315ed',

u'json_display': False, u'servers': u'f24-michigan-micro-2', u'locator': False,

u'role': u'compute', u'action': u'check-disks', u'command': u'create'}",

'diskmgmt_result': '{"status": "PROCESSED", "message":

["{\'Overall_Status\': \'PASS\',

\'Result\': {\'fcfg_disks_results_list\': [], \'spare_disks_results_list\':

[],

\'raid_results_list\': [{\'RAID level\': \'RAID1\', \'Disk Med\': \'HDD\',

\'server\':

\'7.7.7.6\', \'RAID type\': \'HW\', \'host\': \'f24-michigan-micro-2\',

\'role\':

\'block_storage control compute\', \'VD health\': \'Optl\', \'Num VDs\': 1,

\'Num PDs\': 8, \'RAID health\': \'Opt\'}], \'bad_disks_results_list\': [],

\'rbld_disks_results_list\':

[], \'add_as_spares_disks_results_list\': []}}"]}', 'role': 'compute',

'status': 'diskmgmt_completed', 'updated_at': '2018-03-07 21:47:35+00:00',

'uuid': 'd24036c6-4557-4c12-8695-a92f6f9315ed'

}

Delete a Completed diskmgmt Operation

Verb URI

DELETE v1/diskmgmt/delete/?uuid=<uuid>

Example

CURL Command:

 67

curl -k -u admin:<Password> \-H "Accept: application/json" \-X DELETE "https://<Pod
IP>:8445/v1/diskmgmt/delete/?uuid=<UUID>"

JSON Request

DELETE /v1/diskmgmt/delete/?uuid=d24036c6-4557-4c12-8695-a92f6f9315ed

JSON Response

200 OK

Content-Type: application/json

{

"status": "deleted",

"message": "UUID d24036c6-4557-4c12-8695-a92f6f9315ed deleted from

database", "uuid": "d24036c6-4557-4c12-8695-a92f6f9315ed", "error": "None"

}

OSD Maintenance Information

REST wrapper to query information about OSD on Pod storage nodes. This returns to the OSD
status information of all or a selection of OSDs available in the Pod.

Create an OSD Disk Operation

Verb URI

POST /v1/osdmgmt/check_osds

Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-Type:
application/json" \-X POST "https://<POD IP>:8445/v1/osdmgmt/check_osds" \-d
'{"osdmgmt_request": {"command": "create","action": "check-osds","locator": "False","json_display":
"False","servers": "","osd": "None","tag": "all","uuid": ""}}'
JSON Request

POST /v1/osdmgmt/osdmgmt/check_osds '{"osdmgmt_request": {"command":

"create", "action": "check-osds",

"locator": "False", "json_display": "False", "servers": "", "osd": "None",

"uuid": ""}}'

JSON Response

201 Created

Content-Type: application/json

{

'action': 'check-osds',

'created_at': '2018-03-08T21:26:15.329195+00:00',

'osdmgmt_request': "{u'uuid': '9c64ee52-bed5-4b69-91a2-d589411dd223',

u'json_display': u'False', u'servers': u'', u'locator': u'False', u'command':

u'create', u'action':

u'check-osds', u'osd': u'None'}", 'osdmgmt_result': '', 'status': 'not_run',

'updated_at': 'None'

}

 68

Create a Replace OSD Operation

Verb URI

POST v1/osdmgmt/replace_osd

Note:

Login into any controller node and execute “ceph osd tree” and get any osd id from the
storage node listed.

Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-Type:
application/json" \-X POST "https://<POD IP>:8445/v1/osdmgmt/replace_osd" \d
'{osdmgmt_request": {command": "create","action": "replace-osd","locator": "False","json_display":
"False","servers": "<Storage server name>","osd": "<osd.Id from “ceph osd tree”>","tag": "all","uuid":
""}}'
JSON Request

POST /v1/osdmgmt/replace_osd Accept: application/json '{"osdmgmt_request":

{"command": "create",

"action": "replace-osd",

"locator": "False", "json_display": "False", "servers": "f24-michigan-micro-

1", "osd": "osd.9", "uuid": ""}}'

JSON Response
201 Created

Content-Type: application/json

{

"status": "not_run",

"osdmgmt_request": "{u'uuid': '5140f6fb-dca3-4801-8c44-89b293405310',

u'json_display': u'False', u'servers': u'f24-michigan-micro-1', u'locator':

u'False', u'command': u'create',

u'action': u'replace-osd', u'osd': u'osd.9'}", "created_at": "2018-03-

09T15:07:10.731220+00:00", "updated_at": null, "action": "replace-osd",

"osdmgmt_result": ""

}

}

List Check OSD Operation

Verb URI

GET v1/osdmgmt/list/? action=

{check-osds,replace-osd}

Example

CURl Command:

 69

curl -k -u admin:<Password> \-H "Accept: application/json" \-X GET "https://<POD
IP>:8445/v1/osdmgmt/list/?action=check-osds&role=all"

JSON Request

 GET /v1/osdmgmt/list/?action=check-osds

JSON Response
200 OK

Content-Type: application/json

{

'4efd0be8-a76c-4bc3-89ce-142de458d844': {'action': 'check-osds',

'created_at': '2018-03-08 21:31:01+00:00',

'status': 'osdmgmt_running', 'uuid':

'4efd0be8-a76c-4bc3-89ce-142de458d844'},

'5fd4f9b5-786a-4a21-a70f-bffac70a3f3f': {'action': 'check-osds',

'created_at': '2018-03-08 21:11:13+00:00',

'status': 'osdmgmt_completed', 'uuid':

'5fd4f9b5-786a-4a21-a70f-bffac70a3f3f'},

'9c64ee52-bed5-4b69-91a2-d589411dd223': {'action': 'check-osds',

'created_at': '2018-03-08 21:26:15+00:00',

'status': 'osdmgmt_completed', 'uuid':

'9c64ee52-bed5-4b69-91a2-d589411dd223'}

}

}

Show a Completed osdmgmt Operation

Verb URI

GET v1/osdmgmt/show/?u

uid=<uuid>

Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-X GET "https://<POD
IP>:8445/v1/osdmgmt/show/?uuid=POD IP"

JSON Request
GET /v1/osdmgmt/show/?uuid=9c64ee52-bed5-4b69-91a2-d589411dd223

JSON Response
200 OK

Content-Type: application/json

{

'action': 'check-osds',

'created_at': '2018-03-08 21:26:15+00:00',

'osdmgmt_request': "{u'uuid': '9c64ee52-bed5-4b69-91a2-d589411dd223',

u'json_display': u'False', u'servers': u'', u'locator': u'False', u'command':

u'create', u'action':

u'check-osds', u'osd': u'None'}",

 70

'osdmgmt_result': '{"status": "PROCESSED", "message": ["{\'Overall_Status\':

\'PASS\',

\'Result\': { ommitted for doc }}]}', 'status': 'osdmgmt_completed',

'updated_at': '2018-03-08 21:27:16+00:00', 'uuid': '9c64ee52-bed5-4b69-91a2-

d589411dd223'

}

}

Delete a Completed osdmgmt Operation

Verb URI

DELETE v1/osdmgmt/delete/?uuid=<uuid>

Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-X DELETE "https://<POD
IP>:8445/v1/osdmgmt/delete/?uuid=<UUID>"

JSON Request

DELETE /v1/osdmgmt/delete/?uuid=9c64ee52-bed5-4b69-91a2-d589411dd223

JSON Response

200 OK

Content-Type: application/json

{

'error': 'None',

'message': 'UUID 9c64ee52-bed5-4b69-91a2-d589411dd223 deleted from

database', 'status': 'deleted', 'uuid': '9c64ee52-bed5-4b69-91a2-d589411dd223'

}

}

Hardware Management Utility

REST wrapper to control the execution of our query information from the hardware validation utility.

Create a Validate Operation

Verb URI

POST /v1/hardwaremgmt/validate

Curl Command:

curl -k -X POST "https://[<br_api ip>]:8445/v1/hardwaremgmt/validate" \-H "Content-Type: application/json" \-
u admin:<Rest api admin Password> \-d '{

 "hwmgmt_request": {

 "command": "create",

 71

 "action": "validate",

 "hosts": "None",

 "file": "None",

 "feature_list": "all",

 "uuid": ""

 }

}'

JSON Request

POST /v1/hardwaremgmt/validate '{"hwmgmt_request": {"command": "create",

"action": "validate", "hosts": "None",

"file": "None", "feature_list": "all", "uuid": ""}}'

feature_list is a comma separated list of valid features for the given POD

JSON Response

201 Created

Content-Type: application/json

{

‘action’: ‘validate,’

‘created_at’: ‘2018-03-08T22:01:22.195232+00:00’,

‘hwmgmt_request’: “{u’feature_list’: u’all’, u’command’: u’create’, u’file’:

None, u’action’: u’validate’, u’hosts’: None, u’uuid’: ‘89e094d8-b246-4620-

afca- ba3529385cac’}”,

‘hwmgmt_result’: ‘’,

‘status’: ‘not_run’, ‘updated_at’: ‘None’

}

Create a Validate Operation for Failure

Verb URI

GET /v1/hardwaremgmt/resolve_failures

JSON Request

POST /v1/hardwaremgmt/resolve_failures

{

"hwmgmt_request": { "command": "create", "action": "resolve-failures",

"hosts": "None",

"file": "None", "feature_list": "all", "uuid": ""}

}

feature_list is a comma separated list of valid features for the given POD

Curl Command:

 72

curl -k -X GET "https://[br_api ip]:8445/v1/hardwaremgmt/resolve_failures" -u admin:<Rest api admin password> -H
"Accept: application/json

JSON Response

201 Created

Content-Type: application/json

{

"status": "not_run",

"created_at": "2018-03-09T15:47:36.503712+00:00",

"hwmgmt_request": "{u'feature_list': u'all', u'command': u'create', u'file':

None, u'action': u'resolve-failures', u'hosts': None, u'uuid': '49dc1dc9-3170-

4f68-b152-0f99bd19f7b1'}",

"updated_at": "",

"action": "resolve-failures", "hwmgmt_result": ""

}

 List a Validate Operation

Verb URI

GET v1/hardwaremgmt/list

Curl Command:

curl -k -X GET "https://[br_api ip]:8445/v1/hardwaremgmt/list" \-u admin:<Rest api admin password> \-H "Accept:
application/json"

JSON Request

GET /v1/hardwaremgmt/list

JSON Response

200 OK

Content-Type: application/json

{'89e094d8-b246-4620-afca-ba3529385cac': {'action': 'validate',

'created_at': '2018-03-08 22:01:22+00:00',

'feature_list': 'all',

'status': 'hardwaremgmt_completed', 'uuid':

'89e094d8-b246-4620-afca-ba3529385cac'},

'9f70e872-a888-439a-8661-2d2f36a4f4b1': {'action': 'validate', 'created_at':

'2018-03-08 20:34:32+00:00',

'feature_list': 'all',

'status': 'hardwaremgmt_completed', 'uuid':

9f70e872-a888-439a-8661-2d2f36a4f4b1'}

}

Show a Completed hardwaremgmt Operation

Verb URI

GET /v1/hardwaremgmt

/show

/?uuid=<uuid>

https://[br_api/

 73

Curl Command:

curl -k -X GET "https://[br_api ip]:8445/v1/hardwaremgmt/show" \-u admin:<Rest api admin password> \-H "Accept:
application/json"Uuid :” <uuid>”

JSON Request

GET /v1/hardwaremgmt/show/?uuid=9f70e872-a888-439a-8661-2d2f36a4f4b

JSON Response

200 OK

Content-Type: application/json

{

'action': 'validate',

'created_at': '2018-03-08 20:34:32+00:00',

'feature_list': 'all',

'hwmgmt_request': "{u'feature_list': u'all', u'hosts': None, u'file': None,

u'action': u'validate', u'command': u'create', u'uuid': '9f70e872-a888-439a-

8661- 2d2f36a4f4b1'}",

'hwmgmt_result': '{"status": "PROCESSED", "message": "Validate of all

completed", "results": {"status": "PASS", "results": [{"status": "PASS",

"name": "CIMC Firmware Version

Check", "err": null}, {"status": "PASS", "name": "All Onboard LOM Ports

Check", "err":

null}, {"status": "PASS", "name": "PCIe Slot: HBA Status Check", "err":

null}, {"status":

"PASS", "name": "Server Power Status Check", "err": null}, {"status":

"PASS", "name": "NFV Config Check", "err": null}, {"status": "PASS", "name":

"Physical Drives Check", "err":

null}, {"status": "PASS", "name": "PCIe Slot(s) OptionROM Check", "err":

null}, {"status": "PASS", "name": "Intel Network Adapter Check", "err":

null}]}}', 'status': 'hardwaremgmt_completed', 'updated_at': '2018-03-08

20:38:02+00:00', 'uuid': '9f70e872-a888-439a-8661-2d2f36a4f4b1'

Delete a Completed hardwaremgmt Operation

Verb URI

DELETE /v1/hardwaremgmt/delete/?uuid=<uuid>

Curl Command:

curl -k -X DELETE "https://[br_api ip]:8445/v1/hardwaremgmt/delete/?uuid=<uuid>" \-u admin:<Rest api admin
password> \-H "Accept: application/json"

JSON Request

DELETE /v1/hardwaremgmt/delete/?uuid=9f70e872-a888-439a-8661-2d2f36a4f4b1

JSON Response

200 OK

Content-Type: application/json

{

'error': 'None',

https://[br_api/

 74

'message': 'UUID 9f70e872-a888-439a-8661-2d2f36a4f4b1 deleted from

database', 'status': 'deleted', 'uuid': '9f70e872-a888-439a-8661-2d2f36a4f4b1'

}

List Password Secrets

Command

Response

Hardware Management Utility

• Create a Validate Operation

• Create a Validate Operation for Failure

• Create a Validate Operation

• Show a Completed hardwaremgmt Operation

• Delete a Completed hardwaremgmt Operation

REST wrapper to control the execution of or query information from the hardware validation utility.

Create a Validate Operation

Verb URI

POST /v1/hardwaremgm

t/validate

JSON Request

POST /v1/hardwaremgmt/validate '{"hwmgmt_request": {"command":

"create",

"action": "validate", "hosts": "None", "file": "None",

"feature_list": "all", "uuid": ""}}'

Feature_list is a comma separated list of valid features for the

given

pod.

curl -i -X GET -H 'Content-Type: application/json' -u admin:**** -H

'Accept: application/json'

--cacert /var/www/mercury/mercury-ca.crt

https://172.31.231.17:8445/v1/secrets

{'HEAT_KEYSTONE_PASSWORD': '***', 'CINDER_KEYSTONE_PASSWORD': '***'

. . }

 75

Curl Command:

curl -k -X POST "https://[<br_api ip>]:8445/v1/hardwaremgmt/validate" \-H "Content-Type: application/json" \-u
admin:<Rest api admin Password> \-d '{

 "hwmgmt_request": {

 "command": "create",

 "action": "validate",

 "hosts": "None",

 "file": "None",

 "feature_list": "all",

 "uuid": ""

 }

}'
JSON Response

Create a Validate Operation for Failure

Verb URI

GET /v1/hardwaremgmt/resolve_failures

Curl Command:

curl -k -X GET "https://[br_api ip]:8445/v1/hardwaremgmt/resolve_failures" -u admin:<Rest api admin password> -H
"Accept: application/json

JSON Request

201 Created

Content-Type: application/json

{

'action': 'validate',

'created_at': '2018-03-08T22:01:22.195232+00:00',

'hwmgmt_request': "{u'feature_list': u'all', u'command': u'create',

u'file': None, u'action': u'validate', u'hosts': None,

u'uuid': '89e094d8-b246-4620-afca-ba3529385c'}", 'hwmgmt_result':

'',

'status': 'not_run', 'updated_at': 'None'

}

https://[br_api/

 76

JSON Response

List Validate Operation

Verb URI

GET v1/hardwarem

gmt/list

JSON Request

POST /v1/hardwaremgmt/resolve_failures

{

"hwmgmt_request": { "command": "create",

"action": "resolve-failures", "hosts": "None",

"file": "None",

"feature_list": "all", "uuid": ""}

}

feature_list is a comma separated list of valid features for the

given POD

201 Created

Content-Type: application/json

{

"status": "not_run",

"created_at": "2018-03-09T15:47:36.503712+00:00",

"hwmgmt_request": "{u'feature_list': u'all', u'command':

u'create', u'file': None, u'action': u'resolve-failures',

u'hosts': None, u'uuid': '49dc1dc9-3170-4f68-b152-

0f99bd19f7b1'}",

"updated_at": "",

"action": "resolve-failures", "hwmgmt_result": ""

}

 77

Curl Command:

curl -k -X GET "https://[br_api ip]:8445/v1/hardwaremgmt/list" \-u admin:<Rest api admin password> \-H "Accept:
application/json"

JSON Request

JSON Response
200 OK
Content-Type: application/json
{'89e094d8-b246-4620-afca-ba3529385cac': {'action': 'validate',
 'created_at': '2018-03-08 22:
01:22+00:00',
 'feature_list': 'all',
 'status':
'hardwaremgmt_completed',
 'uuid': '89e094d8-b246-4620
afca-ba3529385cac'},
 '9f70e872-a888-439a-8661-2d2f36a4f4b1': {'action': 'validate',
 'created_at': '2018-03-08 20:
34:32+00:00',
 'feature_list': 'all',
 'status':
'hardwaremgmt_completed',
 'uuid':'9f70e872-a888-439a-8661-2d2f36a4f4b1'}
 }

Show a Completed hardwaremgmt Operation

Verb URI

GET /v1/hardwaremgmt

/show

/?uuid=<uuid>

JSON Request

GET /v1/hardwaremgmt/show/?uuid=9f70e872-a888-439a-8661-2d2f36a4f4b

Curl Command:

curl -k -X GET "https://[br_api ip]:8445/v1/hardwaremgmt/show" \-u admin:<Rest api admin password> \-H
"Accept: application/json"

JSON Response

GET /v1/hardwaremgmt/list

 78

200 OK

Content-Type: application/json

{'89e094d8-b246-4620-afca-ba3529385cac': {'action': 'validate',

'created_at': '2018-03-08 22:

01:22+00:00',

'feature_list': 'all', 'status':

'hardwaremgmt_completed',

'uuid': '89e094d8-b246-4620-

afca-ba3529385cac'},

'9f70e872-a888-439a-8661-2d2f36a4f4b1': {'action': 'validate',

'created_at': '2018-03-08 20:

34:32+00:00',

'feature_list': 'all', 'status':

'hardwaremgmt_completed',

'uuid':'9f70e872-a888-439a-8661-2d2f36a4f4b1'}

}

 79

Delete a Completed hardwaremgmt Operation

Verb URI

DELETE /v1/hardwaremgmt/delete/?uuid=<uuid>

JSON Request

Curl Command:

curl -k -X DELETE "https://[br_api ip]:8445/v1/hardwaremgmt/delete/?uuid=<uuid>" \-u admin:<Rest api
admin password> \-H "Accept: application/json"

DELETE /v1/hardwaremgmt/delete/?uuid=9f70e872-a888-439a-8661-

2d2f36a4f4b1

200 OK

Content-Type: application/json

{

'action': 'validate',

'created_at': '2018-03-08 20:34:32+00:00',

'feature_list': 'all',

'hwmgmt_request': "{u'feature_list': u'all', u'hosts': None,

u'file': None, u'action': u'validate', u'command': u'create', u'uuid':

'9f70e872-a888-439a-8661-2d2f36a4f4b1'}",

'hwmgmt_result':

'{"status": "PROCESSED", "message": "Validate of all completed",

"results": {"status": "PASS", "results": [{"status": "PASS", "name":

"CIMC Firmware Version

Check", "err": null}, {"status": "PASS", "name": "All Onboard LOM

Ports Check", "err":

null}, {"status": "PASS", "name": "PCIe Slot: HBA Status Check",

"err": null}, {"status": "PASS", "name": "Server Power Status Check",

"err": null}, {"status":

"PASS", "name": "NFV Config Check", "err": null}, {"status":

"PASS", "name": "Physical Drives Check", "err":

null}, {"status": "PASS",

"name": "PCIe Slot(s) OptionROM Check", "err": null}, {"status":

"PASS", "name": "Intel Network Adapter Check", "err": null}]}}',

'status': 'hardwaremgmt_completed', 'updated_at': '2018-03-08

20:38:02+00:00', 'uuid': '9f70e872-a888-439a-8661-2d2f36a4f4b1'

https://[br_api/

 80

JSON Response

200 OK

Content-Type: application/json

{

'error': 'None',

'message': 'UUID 9f70e872-a888-439a-8661-2d2f36a4f4b1 deleted from

database', 'status': 'deleted',

'uuid': '9f70e872-a888-439a-8661-2d2f36a4f4b1'

}

 81

Disk and OSD Maintenance
 Disk Maintenance information

• Create a Check Disk operation

• Create a Replace Disk operation

• List Check Disk Operation

• Show a Completed diskmgmt Operation

• Delete a Completed diskmgmt Operation

 OSD Maintenance information

• Create an OSD Disk Operation

• Create Replace OSD Operation

• List Check OSD Operation

• Show a Completed osdmgmt Operation

• Delete a Completed osdmgmt Operation

Disk Maintenance information

REST wrapper to query information about RAID disks on Pod nodes. This returns the RAID disk
information of all or a selection of RAID disks available in the Pod.

The disk management extension to the VIM REST API enables support for Disk Management
actions

Create a Check Disk Operation

Resource URI

eVerb URI

POST /v1/diskmgmt/ch

eck_disks

Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-
Type:application/json" \-X POST "https://<Pod IP>:8445/v1/diskmgmt/check_disks" \-d
'{"diskmgmt_request": {"command": "create","action": "check-disks","role": "control","locator":
"False","json_display": "False","servers": "","uuid": ""}}'

 82

JSON Request

JSON Response

POST /v1/diskmgmt/check_disks Accept: application/json

'{"diskmgmt_request": {"command": "create",

"action": "check-disks",

"role": "control",

"locator": "False", "json_display": "False", "servers": "",

"uuid": ""}}'

201 Created

Content-Type: application/json

{

'action': 'check-disks',

'created_at': '2018-03-08T02:03:18.170849+00:00',

'diskmgmt_request': "{u'uuid': '0729bdea-cc19-440f-8339-

ab21e76be84b',

u'json_display': u'False',

u'servers': u'', u'locator': u'False', u'role': u'control',

u'action': u'check-disks', u'command': u'create'}",

'diskmgmt_result': '', 'status': 'not_run', 'updated_at': 'None'

}

 83

Create a Replace Disk Operation

Verb URI

POST /v1/diskmgmt/rep

lace_disks

Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-Type:
application/json" \-X POST "https://<Pod IP>:8445/v1/diskmgmt/replace_disks" \-d
'{"diskmgmt_request": {"command": "create","action": "replace-disks","role": "control","locator":
"False","json_display": "False","servers": "","uuid": ""}}'

JSON Request

JSON Response
201 Created
Content-Type: application/json
{
 "status": "not_run",
 "diskmgmt_request": "{u'uuid': 'cb353f41-6d25-4190-9386-330e971603c9',
 u'json_display': u'False',
 u'servers': u'',
 u'locator': u'False',
 u'role': u'control',
 u'action': u'replace-disks',
 u'command': u'create'}",

POST /v1/diskmgmt/replace_disks Accept: application/json

'{"diskmgmt_request": {"command": "create",

"action": "replace-disks", "role": "control",

"locator": "False", "json_display": "False", "servers": "", "uuid":

""}}'

201 Created

Content-Type: application/json

{

"status": "not_run",

"diskmgmt_request": "{u'uuid': 'cb353f41-6d25-4190-9386-

330e971603c9',

u'json_display': u'False', u'servers': u'', u'locator': u'False',

u'role': u'control',

u'action': u'replace-disks', u'command': u'create'}",

"created_at": "2018-03-09T12:43:41.289531+00:00",

"updated_at": "", "diskmgmt_result": "", "action": "replace-disks"}

 84

 "created_at": "2018-03-09T12:43:41.289531+00:00",
 "updated_at": "",
 "diskmgmt_result": "",
 "action": "replace-disks"}

List Check Disk Operation

Verb URI

GET /v1/diskmgmt/list/?action=

{check-disks,replace-disks

\&role={all,management,control,compute}

Example

Curl Command:

curl -k -u admin:<Rest Api Password> \-H "Accept: application/json" \-X GET "https://<br_api
ip>:8445/v1/diskmgmt/list/?action=check-disks&role=all"

JSON Request

GET /v1/diskmgmt/list/?action=check-disks\&role=all

 85

JSON Response

Show a Completed diskmgmt Operation

Verb URI

GET v1/diskmgmt/show/?uuid=<uuid>

Example

Curl Command:
JSON Request

JSON Response

200 OK

Content-Type: application/json

{

'0be7a55a-37fe-43a1-a975-cbf93ac78893': {'action': 'check-disks',

'created_at': '2018-03-05 14:

45:45+00:00',

'role': 'compute', 'status':

'diskmgmt_completed',

'uuid': '0be7a55a-37fe-43a1-

a975-cbf93ac78893'},

'861d4d73-ffee-40bf-9348-13afc697ee3d': {'action': 'check-disks',

'created_at': '2018-03-05 14:

44:47+00:00',

'role': 'control', 'status':

'diskmgmt_completed',

'uuid': '861d4d73-ffee-40bf-

9348-13afc697ee3d'},

'cdfd18c1-6346-47a2-b0f5-661305b5d160': {'action': 'check-disks',

'created_at': '2018-03-05 14:

43:50+00:00',

'role': 'all',

'status': 'diskmgmt_completed',

'uuid': 'cdfd18c1-6346-47a2-b0f5-661305b5d160'}}

}

GET /v1/diskmgmt/show/?uuid=d24036c6-4557-4c12-8695-a92f6f9315ed

 86

Delete a Completed diskmgmt Operation

Verb URI

DELETE v1/diskmgmt/delete/?uuid=<uuid>

Example
JSON Request

JSON Response

200 OK

Content-Type: application/json

{'action': 'check-disks',

'created_at': '2018-03-07 21:46:41+00:00',

'diskmgmt_request': "{u'uuid': 'd24036c6-4557-4c12-8695-

a92f6f9315ed', u'json_display': False,

u'servers': u'f24-michigan-micro-2', u'locator': False,

u'role': u'compute', u'action': u'check-disks', u'command':

u'create'}",

'diskmgmt_result': '{"status": "PROCESSED", "message":

["{\'Overall_Status\': \'PASS\',

\'Result\': {\'fcfg_disks_results_list\': [],

\'spare_disks_results_list\': [],

\'raid_results_list\': [{\'RAID level\': \'RAID1\', \'Disk Med\':

\'HDD\', \'server\':

\'7.7.7.6\', \'RAID type\': \'HW\', \'host\': \'f24-michigan-micro-

2\', \'role\':

\'block_storage control compute\', \'VD health\': \'Optl\', \'Num

VDs\': 1, \'Num PDs\': 8, \'RAID health\': \'Opt\'}],

\'bad_disks_results_list\': [], \'rbld_disks_results_list\': [],

\'add_as_spares_disks_results_list\': []}}"]}',

'role': 'compute',

'status': 'diskmgmt_completed', 'updated_at': '2018-03-07

21:47:35+00:00',

'uuid': 'd24036c6-4557-4c12-8695-a92f6f9315ed'

}

DELETE /v1/diskmgmt/delete/?uuid=d24036c6-4557-4c12-8695-

a92f6f9315ed

 87

OSD Maintenance Information

REST wrapper to query information about OSD on Pod storage nodes. This returns to the OSD
status information of all or a selection of OSDs available in the Pod.

Create an OSD Disk Operation

Verb URI

POST /v1/osdmgmt/check_osds

Example

JSON Request

JSON Response

200 OK

Content-Type: application/json

{

"status": "deleted",

"message": "UUID d24036c6-4557-4c12-8695-a92f6f9315ed deleted from

database", "uuid": "d24036c6-4557-4c12-8695-a92f6f9315ed",

"error": "None"

}

POST /v1/osdmgmt/osdmgmt/check_osds '{"osdmgmt_request":

{"command": "create",

"action": "check-osds",

"locator": "False", "json_display": "False",

"servers": "",

"osd": "None",

"uuid": ""}}'

201 Created

Content-Type: application/json

{

'action': 'check-osds',

'created_at': '2018-03-08T21:26:15.329195+00:00',

'osdmgmt_request': "{u'uuid': '9c64ee52-bed5-4b69-91a2-

d589411dd223', u'json_display': u'False', u'servers': u'', u'locator':

u'False', u'command': u'create', u'action':

u'check-osds', u'osd': u'None'}", 'osdmgmt_result': '',

'status': 'not_run', 'updated_at': 'None'

}

 88

Create a Replace OSD Operation

Verb URI

POST v1/osdmgmt/replace_osd

Example

JSON Request

JSON Response

List Check OSD Operation

Verb URI

GET v1/osdmgmt/list/? action=

{check-osds,replace-osd}

Example
JSON Request

JSON Response

201 Created

Content-Type: application/json

{

"status": "not_run",

"osdmgmt_request": "{u'uuid': '5140f6fb-dca3-4801-8c44-

89b293405310', u'json_display': u'False',

u'servers': u'f24-michigan-micro-1', u'locator': u'False',

u'command': u'create', u'action': u'replace-osd', u'osd':

u'osd.9'}",

"created_at": "2018-03-09T15:07:10.731220+00:00",

"updated_at": null, "action": "replace-osd", "osdmgmt_result":

""

}

}

POST /v1/osdmgmt/replace_osd Accept: application/json

'{"osdmgmt_request": {"command": "create",

"action": "replace-osd",

"locator": "False", "json_display": "False", "servers": "f24-

michigan-micro-1", "osd": "osd.9",

"uuid": ""}}'

GET /v1/osdmgmt/list/?action=check-osds

 89

 Show a Completed osdmgmt Operation

Example
JSON Request

v1/osdmgmt/show/?uui

d=<uuid>

GET

200 OK

Content-Type: application/json

{

'4efd0be8-a76c-4bc3-89ce-142de458d844': {'action': 'check-osds',

'created_at': '2018-03-08 21:

31:01+00:00',

'status': 'osdmgmt_running', 'uuid': '4efd0be8-a76c-4bc3-

89ce-142de458d844'},

'5fd4f9b5-786a-4a21-a70f-bffac70a3f3f': {'action': 'check-osds',

'created_at': '2018-03-08 21:

11:13+00:00',

'status':

'osdmgmt_completed',

'uuid':'5fd4f9b5-786a-4a21-

a70f-bffac70a3f3f'},

'9c64ee52-bed5-4b69-91a2-d589411dd223': {'action': 'check-osds',

'created_at': '2018-03-08 21:

26:15+00:00',

'status':

'osdmgmt_completed',

'uuid': '9c64ee52-bed5-4b69-91a2-d589411dd223'}

}

}

URI Verb

GET /v1/osdmgmt/show/?uuid=9c64ee52-bed5-4b69-91a2-d589411dd223

 90

JSON Response

Delete a Completed osdmgmt Operation

Verb URI

DELETE v1/osdmgmt/delete/?uuid=<uuid>

Example
JSON Request

JSON Response

Cloud Sanity

• Create a cloud-sanity Test

• List cloud-sanity Test Results

DELETE /v1/osdmgmt/delete/?uuid=9c64ee52-bed5-4b69-91a2-

d589411dd223

200 OK

Content-Type: application/json

{

'error': 'None',

'message': 'UUID 9c64ee52-bed5-4b69-91a2-d589411dd223 deleted from

database', 'status': 'deleted',

'uuid': '9c64ee52-bed5-4b69-91a2-d589411dd223'

}

}

200 OK

Content-Type: application/json

{

'action': 'check-osds',

'created_at': '2018-03-08 21:26:15+00:00',

'osdmgmt_request': "

{u'uuid': '9c64ee52-bed5-4b69-91a2-d589411dd223', u'json_display':

u'False',

u'servers': u'', u'locator': u'False',

u'command': u'create', u'action':

u'check-osds', u'osd': u'None'}",

'osdmgmt_result': '{"status": "PROCESSED", "message":

["{\'Overall_Status\': \'PASS\',

\'Result\': { ommitted for doc }}]}', 'status':

'osdmgmt_completed', 'updated_at': '2018-03-08 21:27:16+00:00',

'uuid': '9c64ee52-bed5-4b69-91a2-d589411dd223'

}

}

 91

• List Specific cloud-sanity Test Results

• Show cloud-sanity Test Results

• Delete cloud-sanity Test Results

REST wrapper to run cloud-sanity test suites. The cloud-sanity extension to the VIM REST API
enables support for managing cloud-sanity test actions.

Create a cloud-sanity Test

Verb URI

Post /v1/cloud-sanity/create

Example

Curl Command:

curl -i -X POST /-H "Accept: application/json" \-H "Content-Type: application/json" \-u
admin:<Password>\cacert/<mercuryca.crt path>\ https://<Pod IP>:8445/v1/cloudsanity/create \\-d

'{"cloudsanity_request": {"command": "create","action": "test","test_name": "cephmon","uuid": "<UU
ID of the node>"}}
JSON Request

JSON Response

List cloud-sanity Test Results

Verb URI

GET /v1/cloud-sanity

JSON Request

 JSON Response

POST /v1/cloudsanity/create Accept: application/json

'{"cloudsanity_request": {"command": "create",

"action": "test", "test_name": "cephmon", "uuid": ""}}'

test_name can be all, management, control, compute, cephmon, cephosd

201 Created

{

'cloudsanity_request': "{u'action': u'test', u'command': u'create',

u'uuid': '5dff1662-3d33-4901-808d-479927c01dde',

u'test_name': u'cephmon'}", 'cloudsanity_result': '',

'created_at': '2018-01-26T20:32:20.436445',

'status': 'not_run', 'test_name': 'cephmon', 'updated_at': ''

}

GET /v1/cloudsanity

 92

200 OK

{ '0b91746f-90b4-4355-a748-727c2e5c59c5': {

'action': 'test',

25 12:08:22',

'cloudsanity_completed', 'management',

4355-a748-727c2e5c59c5'},

'5695cb31-39e4-4be2-9dee-09e7daffc2e7': { 'action':

'test', 01-25 12:03:06',

'cloudsanity_completed',

4be2-9dee-09e7daffc2e7'},

'5dff1662-3d33-4901-808d-479927c01dde': { 'action':

'test',

26 20:32:20',

'cloudsanity_completed',

4901-808d-479927c01dde'},

'7946255d-df58-4432-b729-20cf16eb5ba5': { 'action':

'test',

25 12:05:56',

'cloudsanity_completed',

4432-b729-20cf16eb5ba5'},

'797d79ba-9ee0-4e11-9d9e-47791dd05e07': { 'action':

'test',

'created_at': '2018-01-25 12:05:11',

'created_at': '2018-01-

'status':

'test_name':

'uuid': '0b91746f-90b4-

'created_at': '2018-

'status':

'test_name': 'compute',

'uuid': '5695cb31-39e4-

'created_at': '2018-01-

'status':

'test_name': 'cephmon',

'uuid': '5dff1662-3d33-

'created_at': '2018-01-

'status':

'test_name': 'cephosd',

'uuid': '7946255d-df58-

‘status':

 93

'cloudsanity_completed',

4e11-9d9e-47791dd05e07'},

'962e2c8e-c7b0-4e24-87c1-528cad84002c': { 'action': 'test',

26 18:52:31',

'cloudsanity_completed',

4e24-87c1-528cad84002c'},

'd0111530-ee3b-45df-994c-a0917fd18e11': { 'action': 'test',

26 18:46:23',

'cloudsanity_completed',

45df-994c-a0917fd18e11'}}

'test_name': 'cephmon', 'uuid': '797d79ba-9ee0-

'created_at': '2018-01- 'status':

'test_name': 'control', 'uuid': '962e2c8e-c7b0-

'created_at': '2018-01- 'status':

'test_name': 'control', 'uuid': 'd0111530-ee3b-

List Specific cloud-sanity Test Results
Verb

URI

GET

/v1/cloud-sanity/list/?test_name={all, management,

control,compute,cephmon,cephosd}

CURL Command:

curl -i -X GET \-H "Accept: application/json" \-u admin:<Password> \--cacert /<mercury-ca.crt
path>\https://<POD IP>:8445/v1/cloudsanity/list/?test_name=cephmon

JSON Request

GET /v1/cloudsanity/list/?test_name=cephmon Accept:

application/json

 94

JSON Response

Show cloud-sanity Test Results

Verb URI

GET /v1/cloud-
sanity/show/?uuid=<uuid>

 CURL Command:

curl -X GET "https://<host>:<port>/v1/cloudsanity/show/?uuid=<uu id>" \-H "Accept:
application/json" \-H "Authorization: Bearer <access_token>"

JSON Request

200 OK

{ '5dff1662-3d33-4901-808d-479927c01dde': { 'action': 'test',

'created_at': '2018-

01-26 20:32:20',

'status':

'cloudsanity_completed',

'test_name': 'cephmon', 'uuid': '5dff1662-3d33-

4901-808d-479927c01dde'},

'797d79ba-9ee0-4e11-9d9e-47791dd05e07': { 'action': 'test',

'created_at': '2018-01-

25 12:05:11',

'status':

'cloudsanity_completed',

'test_name': 'cephmon', 'uuid': '797d79ba-

9ee0-4e11-9d9e-47791dd05e07'}}

GET /v1/cloudsanity/show/?uuid=d0111530-ee3b-45df-994c-a0917fd18e11

 95

JSON Response

 Delete cloud-sanity Test Results

Verb URI

DELETE /v1/cloud-
sanity/delete/?uuid=<uuid>

Curl Command:

curl -X DELETE "https://<host>:<port>/v1/cloudsanity/delete/?uuid=<uu id>" \-H "Accept:
application/json" \-u admin:<password>

JSON Response

200 OK

{ 'action': 'test', 'cloudsanity_request':

"{u'action': u'test', u'command': u'create',

u'uuid': 'd0111530-ee3b-45df-994c-a0917fd18e11', u'test_name':

u'control'}",

'cloudsanity_result':

'{"status": "PROCESSED",

"message": {"status": "Pass",

"message": "[PASSED] Cloud Sanity Control Checks Passed",

"results": {"control": {"ping_all_controller_nodes": "PASSED",

"check_rabbitmq_is_running": "PASSED",

"check_rabbitmq_cluster_status": "PASSED", "check_nova_service_list":

"PASSED", "ping_internal_vip": "PASSED",

"disk_maintenance_raid_health": "PASSED",

"check_mariadb_cluster_size": "PASSED", "disk_maintenance_vd_health":

"PASSED"}}}}',

'created_at': '2018-01-26 18:46:23',

'status': 'cloudsanity_completed', 'test_name': 'control',

'updated_at': '2018-01-26 18:47:58',

'uuid': 'd0111530-ee3b-45df-994c-a0917fd18e11'}

GET /v1/cloudsanity/delete/?uuid=444aa4c8-d2ba-4379-b035-

0f47c686d1c4

200 OK

{

"status": "deleted",

"message": "UUID 444aa4c8-d2ba-4379-b035-0f47c686d1c4 deleted from

database", "uuid": "444aa4c8-d2ba-4379-b035-0f47c686d1c4",

"error": "None"

}

 96

 Mandatory/Optional Feature Mapping

 Mandatory Feature Mapping

 Optional Feature Mapping

Mandatory Feature Mapping

POST Request URL

/v1/releasemapping/mandatory_features_mapping

CURL Command:

curl -i -X GET \-H "Accept: application/json" \-u admin:Password \--cacert /<mercury-ca.crt
path>\https://<POD IP>:8445/v1/releasemapping/mandatory_features_mapping

JSON Response:
{

"mandatory": { "networkType": { "C": {

"B": {

},

"feature_status": true,

"values": [{"name": "VXLAN/Linux Bridge", "value":

"VXLAN/Linux Bridge"},], "insight_label": "Tenant Network",

"desc": "Tenant Network"

},

"feature_status": true,

"values": [{"name": "VXLAN/Linux Bridge", "value":

"VXLAN/Linux Bridge"},], "insight_label": "Tenant Network",

"desc": "Tenant Network"

}

"cephMode": {

"all": {

"feature_status": true,

"values": [{"name": "Central", "value": "Central"},], "insight_label": "Ceph

Mode",

"desc": "Ceph Mode"

}

"podType": {

"C": {

"B": {

},

},

"feature_status": true,

"values": [{"name": "Fullon", "value": "fullon"},],

"insight_label": "POD Type",

"desc": "POD Type"

},

"feature_status": true,

"values": [{"name": "Fullon", "value": "fullon"},],

"insight_label": "POD Type",

"desc": "POD Type"

}

 97

"installMode": {

"all": {

"feature_status": true,

"values": [{"name": "Connected", "value": "connected"},], "insight_label":

"Install Mode",

"desc": "Install Mode"

}

}

},

"platformType": [{"name": "B-series", "value": "B"}, {"name": "C-series",

"value": "C"}],

"postinstalllinks": {

"all",

"platformtype": Passwords"}

}

"view_cloudpulse": {"alwayson": true, "feature_status": true,

"platformtype":

"insight_label": "Run VMTP", "desc": "Cloudpluse"}, "password_reconfigure":

{"alwayson": true, "feature_status": true,

"all", "insight_label": "Reconfigure Passwords", "desc": "Reconfigure

}

Optional Feature Mapping

CURL Command:

curl -i -X GET \-H "Accept: application/json" \-u admin:Password \--cacert /<mercury-ca.crt
path>\https://<POD IP>:8445/v1/releasemapping/optional_features_mapping

POST Request URL
/v1/releasemapping/optional_features_mapping

JSON Response:
[

{

"heat": {

"feature_status": true, "insight_label": "Heat",

"repeated_redeployment": false, "reconfigurable": ["all"], "desc":

"Openstack HEAT service"

}

},

..... other features

]

 98

Testing and Polling
• NFVBench Network Performance Testing

• Create NFVBench Run

• Status Polling

• Get Fixed Rate Test Result

• Execute NDR/PDR Test

• Get NDR/PDR Test Results

NFVBench Network Performance Testingg

Create NFVBench Run

Starts the network performance test with provided configuration.

REST API to create fixed rate test

Verb URI

Post v1/nfvbench/ create_ndr_pdr_test

Example

CURL Command:
curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-Type: application/json" \-X

POST "https://<Pod IP>:8445/

POST Request URL /v1/nfvbench/create_fixed_rate_test

JSON Request

JSON Response

POST Request URL
/v1/nfvbench/create_fixed_rate_test JSON Request:

{"nfvbench_request":

{

"duration_sec": 20, "traffic_profile": [

{

"name": "custom",

"l2frame_size": ["64","IMIX", "1518"]

}

],

"traffic": { "bidirectional": true,

"profile": "custom"

},

"flow_count": 1000

}

}

 99

Status Polling

The polling status of NFVbench status can be nfvbench_running, nfvbench_failed, or nfvbench_completed.
CURL COMMAND:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-Type: application/json" \-X
GET "https://<Pod IP>:8445/v1/nfvbench/Fixed_Rate_Test"

Resource URI

Verb URI

GET v1/nfvbench/<test_name>

Get Fixed Rate Test Result

CURL Commoand:

curl -i -X GET -H "Content-Type: application/json" -H "Accept: application/json" -u admin:<Password> --
cacert /<mercury-ca.crt path>"https://<PodIP>:8445/v1/nfvbench/get_ndr_pdr_test_result"

201 CREATED

Content-Type: application/json

{

"status": "not_run", "nfvbench_request":

'{

"duration_sec": 20, "traffic_profile": [

{

"name": "custom",

"l2frame_size": ["64","IMIX","1518"]

}

],

"traffic": {"bidirectional": true,

"profile": "custom"

},

"flow_count": 1000

}',

"created_at": "2017-08-16T06:14:54.219106",

"updated_at": null, "nfvbench_result": "", "test_name":

"Fixed_Rate_Test"

}

 100

CURL Command:

curl -k -X POST "https://<Pod IP>:8445/v1/nfvbench/create_ndr_pdr_test" -H "Accept:
application/json" -H "Content-Type: application/json" -u admin:<Password> -d
@/tmp/req_NDR_PDR_Test.json

GET Request URL
/v1/upgrade/get_fixed_rate_test_result JSON Response:

Check If NFVbench Test is running

200 OK

Content-Type: application/json

{

"status": "nfvbench_running",

"nfvbench_request": '{"traffic": {"bidirectional": true, "profile":

"custom"}, "rate": "1000000pps",

"traffic_profile": [{"l2frame_size": ["1518"], "name": "custom"}],

"duration_sec": 60, "flow_count": 1000}', "nfvbench_result": ""

"created_at": "2017-05-30T21:40:40.394274", "updated_at": "2017-05-

30T21:40:41.367279",

}

Check If NFVbench Test is completed
200 OK

Content-Type: application/json

{

"status": "nfvbench_completed",

"nfvbench_request": '{"traffic": {"bidirectional": true, "profile":

"custom"}, "rate": "1000000pps", "traffic_profile": [{"l2frame_size":

["1518"], "name": "custom"}], "duration_sec": 60, "flow_count":

1000}', "nfvbench_result": '{"status": "PROCESSED", "message":

{"date": "2017-08-15 23:15:04", "nfvbench_version":

"0.9.3.dev2", }

"created_at": "2017-05-30T21:40:40.394274", "updated_at": "2017-05-

30T22:29:56.970779",

}

 101

Execute NDR/PDR Test

Get NDR/PDR Test Results

POST Request URL

/v1/nfvbench/create_ndr_pdr_test

Accept: application/json

{"nfvbench_request":

{

"duration_sec": 20, "traffic_profile": [

{

"name": "custom",

"l2frame_size": ["64","IMIX","1518"]

}

],

"traffic": {"bidirectional": true, "profile": "custom"},

"flow_count": 1000}}

JSON Response
201 CREATED

Content-Type: application/json

{

"status": "not_run", "nfvbench_request":

'{

"duration_sec": 20,

"traffic_profile": [{"name": "custom", "l2frame_size":

["64","IMIX","1518"]}],

"traffic": {"bidirectional": true, "profile": "custom"},

"flow_count": 1000}' "created_at": "2017-08-16T07:18:41.652891",

"updated_at": null, "nfvbench_result": "", "test_name":

"NDR_PDR_Test"

}

 102

GET Request URL
/v1/ nfvbench/get_ndr_pdr_test_result JSON Response:

If NFVbench NDR/PDR test is running
200 OK

Content-Type: application/json

{

"status": "nfvbench_running", "nfvbench_request": '{"duration_sec":

20,

"traffic": {"bidirectional": true, "profile": "custom"},

"traffic_profile": [{"l2frame_size": ["64", "IMIX", "1518"],

"name": "custom"}], "flow_count": 1000}',

"nfvbench_result": ""

"created_at": "2017-08-16T07:18:41.652891", "updated_at": "2017-09-

30T22:29:56.970779",

}

If NFVbench NDR/PDR test is completed
200 OK

Content-Type: application/json

{

"status": "nfvbench_completed", "nfvbench_request":

'{"duration_sec": 20,

"traffic": {"bidirectional": true, "profile": "custom"},

"traffic_profile": [{"l2frame_size": ["64", "IMIX", "1518"],

"name": "custom"}], "flow_count":1000}', "nfvbench_result":

'{"status": "PROCESSED",...}'

"created_at": "2017-08-16T07:18:41.652891", "updated_at": "2017-09-

30T22:29:56.970779",

}

 103

Post-Installation Operations
 Create a Post Install Operation

 Retrieve Post Install Operation Status

The following are the post install operations that can be performed, after the successful installation of
OpenStack. It uses a common api. Following is an Example:

1. reconfigure

2. reconfigure -regenerate passwords

3. reconfigure -setpasswords,setopenstack_configs

4. reconfigure -alertmanager_config, -alerting_rules_config

5. check-fernet-keys

6. resync-fernet-keys

7. rotate-fernet-keys

Create a Post Install Operation

Resource URI

Verb URI

POST /v1/mi

sc

Examples:
JSON Request

JSON Response

JSON Request

POST /v1/misc

Accept: application/json

{"action": {"reconfigure": true}}

201 CREATED

Content-Type: application/json

{

"uuid": "7e30a671-bacf-4e3b-9a8f-5a1fd8a46733", "created_at":

"2017-03-19T14:03:39.723914",

"updated_at": null,

"operation_status": "OperationScheduled", "operation_logs": "",

"operation_name": "{"reconfigure": true}"

}

 104

JSON Response

Retrieve Post Install Operation Status

Resource URI

Verb URI

GET /v1/m

isc

Example
JSON Request

JSON Response

201 CREATED

Content-Type: application/json

{

"uuid": "68b67265-8f09-480e-8608-b8aff77e0ec7", "created_at":

"2019-01-09T16:42:11.484604+00:00",

"updated_at": null,

"operation_status": "OperationScheduled", "operation_logs": "",

"operation_name": "{"alertmanager_config": <json_config>,

"reconfigure": true}"

}

POST /v1/misc

Accept: application/json

{"action": {"reconfigure": true, "alertmanager_config":

<json_config>}}

GET /v1/misc

Accept: application/json

201 CREATED

Content-Type: application/json

{

"uuid":

"7e30a671-bacf-4e3b-9a8f-5a1fd8a46733", "created_at": "2017-03-

19T14:03:39.723914", "updated_at": "2017-03-19T14:03:42.181180",

"operation_status": "OperationRunning", "operation_logs":

"xxxxxxxxxxxxxxxxx", "operation_name": "{\"reconfigure\": true}"

}

 105

Version and Hardware Information
 Version

 Hardware Information

• Create a HWinfo Operation

• Retrieve Hwinfo Operation Results

• Get Node Hardware Information

Version

Retrieve the version of the VIM.

Resource URI

Example

CURL Command:

curl -k -X GET "https://<Pod IP>:8445/v1/version" -H "Accept: application/json" -u
admin:<Password>

JSON Request

JSON Response

Hardware Information

REST Wrapper returns the hardware information available in the setupdata.

Verb URI

GET /v1/version

GET /v1/version

Accept: application/json

200 OK

Content-Type: application/json

{"version": "1.9.1"}

 106

Create a HWinfo Operation

Resource URI

Verb URI

GET /v1/hwinfo

 Example

CURL Command:
curl -k -u admin:<Password> \ -H "Accept: application/json" \ -H "Content-Type:
application/json" \-X POST "https://<Pod IP>:8445/v1/hwinfo" \-d '"setupdata": "<uuid of setup
data>"}'

JSON Request

JSON Response

 Retrieve Hwinfo Operation Results

Resource URI

Verb URI

GET /v1/hwinfo/{id}

Property:

id—The ID of the node you want to query.

Example

CURL Cmmmand:

curl -k -X GET "https://<Pod IP>:8445/v1/hwinfo/789" -H "Accept: application/json" -u
admin:<Password>

JSON Request

201 CREATED

Content-Type: application/json

{

"status": "hwinfoscheduled",

"uuid": "928216dd-9828-407b-9739-8a7162bd0676",

"setupdata": "c94d7973-2fcc-4cd1-832d-453d66e6b3bf", "created_at":

"2017-03-19T13:41:25.488524", "updated_at": null, "hwinforesult": ""

}

POST /v1/hwinfo

Accept: application/json

{

"setupdata":"c94d7973-2fcc-4cd1-832d-453d66e6b3bf"

}

 107

JSON Response

Get Node Hardware Information

Rest API helps you to get the hardware information of all the nodes in the pod through CIMC/UCSM.

o Total Memory

o Firmware Info (Model, Serial Number)

o CIMC IP

GET /v1/hwinfo/789 Accept: application/json

200 OK

Content-Type: application/json

{

"status": "hwinfosuccess",

"uuid": "928216dd-9828-407b-9739-8a7162bd0676",

"setupdata": "c94d7973-2fcc-4cd1-832d-453d66e6b3bf", "created_at":

"2017-03-19T13:41:25.488524", "updated_at":

"2017-03-19T13:42:05.087491",

"hwinforesult": "{\"172.29.172.73\": {\"firmware\":

............

.................

}

GET Request URL
/v1/hwinfo Output Response

{

"hwinforesult": "{"control-server-2": {"memory": {"total_memory":

"131072"}, "firmware": {"serial_number": "FCH1905V16Q", "fw_model":

"UCSC-C220-M4S"}, "cimc_ip": "172.31.230.100", "storage":

{"num_storage": 4}, "cisco_vic_adapters": {"product_name": "UCS VIC

1225"},

"cpu": {"number_of_cores": "24"}, "power_supply": {"power_state":

"on"}}

...

}

 108

 OpenStack Setup
o Secrets

o Retrieve the List of Secrets that are Associated with the OpenStack Setup

o OpenStack Configuration

o Retrieve the list of Configurations Associated with the OpenStack Setup

o Release Mapping Information

Secrets

Retrieve the List of Secrets that are Associated with the OpenStack Setup

You can retrieve the set of secret passwords that are associated with the OpenStack setup using the
preceding api. This gives the list of secrets for each service in OpenStack.

Resource URI

Verb URI

GET /v1/se

crets

Example

CURL Command:

curl -i -X GET \-H "Accept: application/json" \-u admin:<Password> \--cacert /<mercury-ca.crt path>
\"https://<Pod Ip:8445>/v1/secrets"

JSON Request

JSON Response

GET /v1/secrets

Accept: application/json

200 OK

Content-Type: application/json

{

"HEAT_KEYSTONE_PASSWORD": "xxxx", "CINDER_KEYSTONE_PASSWORD":

"xxxxx",

....

....

"RABBITMQ_PASSWORD": "xxxxx"

}

 109

OpenStack Configuration

Retrieve the List of Configurations Associated with the OpenStack Setup

You can retrieve the set of OpenStack configurations associated with the OpenStack setup using the
preceding api. This gives the current settings of different configurations such as verbose logging and
debug logging for different OpenStack services.

Verb URI

GET /v1/secrets

JSON Request

CURL Command

curl -i -X GET \-H "Content-Type: application/json" \-H "Accept: application/json" \-u
admin:<Password>\cacert/<mercuryca.crtpath>\https://<PodIP>:8445/v1/openstack_config

JSON Response

Release Mapping Information

This api is used to see the list of features included and list of options which can be reconfigured in the

Openstack Setup.
 Retrieve the Release Mapping information

 Resource URI

Verb URI

GET /v1/releasemapping

CURL Command:

curl -i -X GET \-H "Accept: application/json" \-u admin:<Password> \--cacert /<mercury-ca.crt
path>\https://<Pod IP>:8445/v1/releasemapping

200 OK

Content-Type: application/json

{

"CINDER_DEBUG_LOGGING": false, "KEYSTONE_DEBUG_LOGGING": false,

....

....

"NOVA_VERBOSE_LOGGING": true

}

GET /v1/openstack_config Accept: application/json

 110

JSON Request

JSON Response

GET /v1/releasemapping Accept: application/json

200 OK

Content-Type: application/json [

{

"SWIFTSTACK": {

"feature_status": true,

],

"desc": "swift stack feature"

}

},........

..............

}

 111

Update
 Start an Update Process

 Roll Back an Update

 Commit an Update

 Retrieve the Details of an Update

Note: HVIM 6.0 release not supporting Update hence we are not updating the documentation

Start an Update Process

Resource URI

Verb URI

POST /v1/update

Parameters:

 fileupload - tar file to be uploaded.

 filename - Name of the uploaded file.

Example
JSON Request

curl -sS -X POST --form "fileupload=@Test/installer.good.tgz" --

form "filename=installer.good.tgz" https://10.10.10.8445/v1/update

This curl request is done as a form request.

 112

Roll Back an Update

Resource URI

Verb URI

PUT /v1/up

date

Example

JSON Request

JSON Response

Commit an Update

Resource URI

Verb URI

PUT /v1/update

PUT /v1/update

Accept: application/json

{

"action":"rollback"

}

JSON Response
200 OK

Content-Type: application/json

{

"update_logs": "logurl", "update_status": "UpdateSuccess",

"update_filename": "installer-4579.tgz", "created_at": "2016-07-

10T18:33:52.698656", "updated_at": "2016-07-10T18:54:56.885083"

}

409 CONFLICT

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client" "faultstring": "Uploaded

file is not in tar format"

}

200 OK

Content-Type: application/json

{

"update_logs": "logurl", "update_status": "ToRollback",

"update_filename": "installer-4579.tgz", "created_at": "2016-07-

10T18:33:52.698656", "updated_at": "2016-07-10T18:54:56.885083"

}

 113

Example: JSON Request

JSON Response

Retrieve the Details of an Update

Resource URI

Verb URI

GET /v1/update

Example
JSON Request

GET /v1/update

Accept: application/json

JSON Response
200 OK
 Content-Type: application/json
 {
 "update_logs": "logurl",
 "update_status": "UpdateSuccess",
 "update_filename": "installer-4579.tgz",
 "created_at": "2016-07-10T18:33:52.698656",
 "updated_at": "2016-07-10T18:54:56.885083"
 }

PUT /v1/update

Accept: application/json

{

"action":"commit"

}

200 OK

Content-Type: application/json

{

"update_logs": "logurl", "update_status": "UpdateSuccess",

"update_filename": "installer-4579.tgz",

"created_at": "2016-07-10T18:33:52.698656", "updated_at": "2016-07-

10T18:54:56.885083"

}

 114

Install Resource

Retrieve Information About a Particular Node

Resource URI

Verb URI

GET /v1/nodes{id}

Property:

id—The ID of the node that you want to retrieve.

Example

JSON Request

JSON Response

200 OK

Content-Type: application/json

{

"status": "Active",

"uuid": "456",

"setupdata": "123",

"node_data": "{

"rack_info": { "rack_id": "RackA"

},

"cimc_info": { "cimc_ip": "10.10.10.10"

},

"management_ip": "7.7.7.10"

}",

"updated_at": null, "mtype": "compute",

"install": "345", "install_logs": "logurl",

"created_at":"2016-0710T06:17:03.761152",

"name": " compute-1"

}

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Node doesn't exists"

}

POST /v1/nodes

Accept: application/js

 115

Install Resource
• Return a List of Installation

• Create an Installation

• Retrieve the Installation

• Stop the Installation

REST wrapper for install provides methods for starting, stopping, and viewing the status of the
installation process.

Return a List of Installation

Resource URI

Verb URI

GET /v1/install

Example
JSON Request

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Rest API admin user password> -H
'Accept: application/json' -H 'User-Agent: python-ciscovimclient' --cacert "<mercury-ca.crt file path>"
https://<br_api>:8445/v1/install

JSON Response

GET /v1/install

Accept: application/json

200 OK

Content-Type: application/json

{"installs": [{

"ceph": "Skipped",

"uuid": "123",

"setupdata": "345",

"vmtpresult": "{

"status": "PASS",

"EXT_NET": []

}",

"baremetal": "Success", "orchestration": "Success",

"validationstatus": "{ "status": "PASS", "Software_Validation": [],

"Hardware_Validation": []

}",

"currentstatus": "Completed", "validation": "Success", "hostsetup":

"Success", "vmtp": "Skipped"

}]

}

 116

Create an Installation

Resource URI

Verb URI

POST /v1/install

Fresh install HVIM in the pod using below process

1. Upload setupdata file (payload.json) before installation start, take setupdata json file from current
installation

2. Install HVIM in 8 steps process

curl -i -X POST -H 'Content-Type: application/json' -H 'Accept: application/json' -H 'CVIM-API-
Version: 4.0.0' -H 'User-Agent: python-ciscovimclient' -u admin:<Rest API admin password> --cacert
"mercury-ca.crt file path" -d @payload.json https://<br_api>:8445/setupdata

curl -i -X POST -H "Content-Type: application/json" -H "Accept: application/json" -H "CVIM-API-
Version: 4.0.0" -H "User-Agent: python-ciscovimclient" -u admin:<Rest API admin password> --
cacert "<mercury-ca.crt certificate path>" -d '{"setupdata": "<setupdata UUID taken from above
POST method>", "stages": ["validation", "bootstrap", "runtimevalidation", "baremetal", "orchestration",
"hostsetup", "ceph", "vmtp"]}' https://<br_api>:8445/v1/install

Example
JSON Request

201 CREATED

Content-Type: application/json

{

"ceph": "Skipped",

"uuid": "123",

"setupdata": "345",

"vmtpresult": "{

"status": "PASS",

"EXT_NET": []

}",

"baremetal": "Success", "orchestration": "Success",

"validationstatus": "{ "status": "PASS", "Software_Validation": [],

"Hardware_Validation": []

}",

"currentstatus": "Completed", "validation": "Success", "hostsetup":

"Success", "vmtp": "Skipped"

}

409 CONFLICT

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Install already exists"

}

 117

JSON Response

Retrieve the Installation

Resource URI

Verb URI

GET /v1/install/{id}

Property:

id—The ID of the installation that you want to retrieve.

Example
JSON Request

curl -i -X GET -H "Content-Type: application/json" -u admin:<Rest API admin password> -H "Accept:
application/json" --cacert "<mercury-ca.crt file path>" https://<br_api>:8445/v1/install/<UUID of the install GET
request>

JSON Response

GET /v1/install Accept: application/js

{

"setupdata": "123", "stages": ["validation", "bootstrap",

"runtimevalidation", "baremetal", "orchestration", "hostsetup",

"ceph", "vmtp"

]

}

GET /v1/install/345

Accept: application/js

 118

Stop the Installation

Resource URI

Verb URI

DELET

E

/v1/install/{id}

Property:

id—The ID of the installation that you want to stop.

Example JSON Request

curl -i -X DELETE -H "Content-Type: application/json" -H "Accept: application/json" -H "User-
Agent: python-ciscovimclient" -u admin:<Rest API admin password> --cacert "<mercury-ca.crt file
path>" https://<br_api>:8445/v1/install/<install UUID>

JSON Response

204 NO CONTENT

Content-Type: application/json

404 NOT FOUND

Content-Type: application/json

{

DELETE /v1/install/345

Accept: application/js

200 OK

Content-Type: application/json

{

"ceph": "Skipped",

"uuid": "123",

"setupdata": "345",

"vmtpresult": "{

"status": "PASS",

"EXT_NET": []

}",

"baremetal": "Success", "orchestration": "Success",

"validationstatus": "{ "status": "PASS", "Software_Validation": [],

"Hardware_Validation": []

}",

"currentstatus": "Completed", "validation": "Success", "hostsetup":

"Success", "vmtp": "Skipped"

}

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Install doesn't exists"

}

 119

"debuginfo": null "faultcode": "Client" "faultstring": "Install doesn't

exists"

}

 120

Nodes and Replace Controller
• Nodes

o Getting a List of Nodes

o Add New Nodes

o Retrieve Information About a Particular Node

o Remove a Node

o Health of the Management Node

• Replace a Controller

Nodes

Getting a List of Nodes

Resource URI

Verb URI

GET /v1/nodes

Example
JSON Request

curl -i -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' -H 'CVIM-API-
Version: 4.0.0' -H 'User-Agent: python-ciscovimclient' -u admin:<Rest API admin password> --cacert
"<mercury-ca.crt path>" https://<br_api>:8445/nodes

JSON Response

Get /v1/nodes

Accept: application/js

 121

Add New Nodes

The nodes are in compute or block_storage type. Before adding the nodes to the system, the name
of the nodes and other necessary information like cimc_ip and rackid must be updated in the
setupdata object. If the setupdata object is not updated, the post call does not allow you to add the
node.

Steps to add node into the cluster

1. Get setup json response from GET request, convert or beautify the json string, save it in
payload.json file

2. Update modified setup_data.yaml file using PUT request

3. Send remove request using POST request

Resource URI

PUT setupdata/uuid

/v1/no

des POST

200 OK

Content-Type: application/json

{

"nodes": [[

"status": "Active",

"uuid": "456",

"setupdata": "123",

"node_data": "{

"rack_info": { "rack_id": "RackA"

},

"cimc_info": {

"cimc_ip": "10.10.10.10"

},

"management_ip": "7.7.7.10"

}",

"updated_at": null, "mtype": "compute",

"install": "345", "install_logs": "logurl",

"created_at":"2016-0710T06:17:03.761152",

"name": " compute-1"

}

]

}

URI Verb

 122

Example
JSON Request

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-
Agent: python-ciscovimclient" -u admin:<Rest API admin passwd> --cacert "mercury-ca.crt path" -d
@payload.json https://<br_api>:8445/setupdata/<setup data uuid>

curl -i -X POST -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent: python-c

 iscovimclient" -u admin: --cacert <mercury-ca.crt> -d '{"name": "<Node name to be removed",

 "skip_vmtp": false}' https://:8445/nodes/add_compute

JSON Response

Remove a Node

The node to be deleted must be removed from the setupdata object. Once the setupdata
object is updated, you can safely delete the node. The node object cannot be deleted until it calls the
remote node backend and succeeds.

Resource URI

Verb URI

DELETE /v1/nodes{id}

Property:

POST /v1/nodes

Accept: application/js

{

"name" : "compute-5"

}

201 CREATED

Content-Type: application/json

{

"status": "ToAdd",

"uuid": "456",

"setupdata": "123",

"node_data": "{

"rack_info": { "rack_id": "RackA"

},

"cimc_info": { "cimc_ip": "10.10.10.10"

},

"management_ip": "7.7.7.10"

}",

"updated_at": null, "mtype": "compute",

"install": "345", "install_logs": "logurl",

"created_at":"2016-0710T06:17:03.761152",

"name": " compute-1"

}

https://:8445/nodes/add_compute

 123

id—The ID of the node that you want to remove. Example

Follow below procedure to remove node from the cluster using rest api call

1. Get setupdata UUID from install API

2. Get setupdata with the collected setupdata uuid from above install API.

3. Get list of nodes already deployed in the pod

4. Update the modified setupdata

5. Delete node from the podcurl -g -i -X GET -H 'Content-Type: application/json' -u admin: -H 'Accept:

application/json' -H 'User-Agent: python-ciscovimclient' --cacert "<mercury-ca.crt file path>"

https://:8445/install

curl -g -i -X GET -H 'Content-Type: application/json' -u admin: -H 'Accept: application/json' -H 'User-

Agent: python-ciscovimclient' --cacert "<mercury-ca.crt file path>" https://:8445/setupdata/

curl -g -i -X GET -H 'Content-Type: application/json' -u admin: -H 'Accept: application/json' -H 'User-

Agent: python-ciscovimclient' --cacert "<mercury-ca.crt file path>" https://:8445/nodes

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent:

python-ciscovimclient" -u admin: --cacert "<mercury-ca.crt file path>" -d @setup_data_comp1-

remove.json https://:8445/setupdata/

JSON Request

curl -g -i -X DELETE -H 'Content-Type: application/json' -u admin: -H 'Accept: application/json' -H 'User-

Agent: python-ciscovimclient' --cacert "<mercury-ca.crt file path>" -d '{"force_op": false, "name": ""}'

https://:8445/nodes/remove_compute

JSON Response

To clear the database and delete the entries in the nodes, the delete API is called with special
parameters that are passed along with the delete request. The JSON parameters are in the following
format.

JSON Request

DELETE /v1/nodes/456 Accept: application/js

204 ACCEPTED

Content-Type: application/json

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Node doesn't exists"

}

https://:8445/install
https://:8445/setupdata/
https://:8445/nodes
https://:8445/setupdata/
https://:8445/nodes/remove_compute

 124

JSON Response

Health of the Management Node

This API is used to retrieve the health of the management node. It checks various parameters such
as partitions, space and so on. Resource URI

Verb URI

GET /v1/health

Example
JSON Request

curl -i -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' -H 'CVIM-API-Version: 4.0.0' -H 'User-
Agent: python-ciscovimclient' -u admin:<Rest API admin password> --cacert "<mercury-ca.crt file path>"
https://<br_api>:8445/v1/health

DELETE /v1/nodes/456 Accept: application/js

{

"clear_db_entry":"True"\

}

204 ACCEPTED

Content-Type: application/json

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Node doesn't exists"

}

This is done only if the node is deleted from the REST API database. The failure reason of the node must
be rectified manually apart from the API. True is a string and not a boolean in the preceding line.

GET /v1/health

Accept: application/json

 125

JSON Response

Color signifies the health of the pod for Insight:

 Grey signifies that no installation is kicked off on the pod.

 Green signifies that everything is in Good state and cloud installation is active.

 Blue signifies that some operation is running on the pod.

 Red signifies that the pod is in critical state, and you might need TAC support to recover the
pod.

 Amber indicates a warning if a pod management (Add/Remove/Replace) operation failed.

Replace a Controller

Resource URI

Verb URI

PUT /v1/nodes{id}

Property:

id—The ID of the controller that you want to replace.

Example
JSON Request

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent: python-

ciscovimclient" -u admin: --cacert "<mercury-ca.crt file path>" -d '{"name": "", "status": "ToReplace",

"force_op": false, "skip_vmtp": false}' https://:8445/nodes/

JSON Response

200 OK

Content-Type: application/json

200 OK

Content-Type: application/json

{

"status": "PASS", "pod_status": { "color": "BLUE",

"version": "<VERSION_NO.>"

},

"insight_version": "<VERSION_NO.>"

}

PUT /v1/nodes/456 Accept: application/js

https://:8445/nodes/

 126

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Node doesn't exists"

}

 127

Setupdata and Offline Validation
 Setupdata

• Retrieving the Setupdata

• Creating Setupdata

• Retrieving a Single Setupdata

• Updating a Setupdata

• Deleting a Setupdata

 Offline validation

• Create an Offline Validation Operation

• Retrieve the Results of Offline Validation

Setupdata

REST wrapper for setupdata. Provides methods for listing, creating, modifying, and deleting
setupdata.

Retrieving the Setupdata

Resource URI

Verb URI

GET /v1/setupdata

Example

Curl Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<rest api password> -H 'Accept:
application/json' -H 'User-Agent: python-ciscovimclient' --cacert "C:\certificates\<mercury-ca.crt
path>" https://<br_api ip>:8445/setupdata
JSON Request

GET /v1/setupdata

Accept: application/json

 128

JSON Response

Creating Setupdata

Resource URI

Verb URI

POST /v1/setupdata

Example

Curl Command:

curl -g -i -X POST -H "Content-Type: application/json" -u admin:<Rest Api password> -H
"Accept: application/json" --cacert 'C:\certificates\<mercury-ca.crt path>' "name": "GG34", "uuid":
"uuid", "meta": {"user": "root"} -d "{\"jsondata\": " https://<br_api ip>:8445/v1/offlinevalidation

JSON Request

JSON Response

POST /v1/setupdata Accept: application/json

{ "name":"GG34",

"uuid": "123"

"meta":{

"user":"root"

},

"jsondata":{

.......

}

}

200 OK

Content-Type: application/json

{"setupdatas": [{

"status": "Active",

"name":"GG34",

"uuid": "123"

"meta":{

"user":"root"

},

"jsondata":{

.......

}

}]}

 129

Retrieving a Single Setupdata

Resource URI

Verb URI

GET /v1/setupdata/(id)

Property:

id—The ID of the setupdata that you want to retrieve. Example
JSON Request

Curl Command:
curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Rest Api Password> -H 'Accept: application/json' -H
'User-Agent: python-ciscovimclient' --cacert 'C:\certificates\i11tb3\<mercury-ca.crt path>' https://<br_api
ip>:8445/setupdata/<uuid>

JSON Response

201 OK

Content-Type: application/json

{

"status": "Active",

"name":"GG34",

"uuid": "123"

"meta":{

"user":"root"

},

"jsondata":{

.......

}

}

400 Bad Request

Content-Type: application/json

{

"debuginfo": null "faultcode":"Client" "faultstring": "Error"

}

409 CONFLICT

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client" "faultstring": "Error"

}

GET /v1/setupdata/123 Accept: application/json

 130

Updating a Setupdata

Resource URI

Verb URI

PUT /v1/setupdata/(id)

Property:

id—The ID of the setupdata that you want to update.

Example

JSON Request

JSON Response

200 OK

Content-Type: application/json

{

"status": "Active",

"name":"GG34",

"uuid": "123"

"meta":{

"user":"root"

},

"jsondata":{

.......

}

}

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Setupdata could not be found."

}

PUT /v1/setupdata/123 Accept: application/json

 131

Deleting a Setupdata

Resource URI

Verb

URI

DELETE

/v1/setupdata/(id)

Property:

id—The ID of the setupdata that you want to delete. Example

JSON Request

JSON Response

204 NO CONTENT Returned on success

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Setupdata could not be found."

}

400 BAD REQUEST

Content-Type: application/json

200 OK

Content-Type: application/json

{

"status": "Active",

"name":"GG34",

"uuid": "123"

"meta":{

"user":"root"

},

"jsondata":{

.......

}

}

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Setupdata could not be found."

}

DELETE /v1/setupdata/123 Accept: application/json

 132

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Setupdata cannot be deleted when it is being used by an

installation"

}

Offline Validation

REST wrapper does the offline validation of setupdata. Rest wrapper does only the software
Validation of the input setupdata.

Create an Offline Validation Operation

Resource URI

Verb URI

POST /v1/offlinevalidation

Example
JSON Request

curl -g -i -X POST -H "Content-Type: application/json" -u admin: -H "Accept: application/json" --cacert '' -d "{"jsondata":
$(cat setup_data.json)}" https://:8445/v1/offlinevalidation

JSON Response

POST /v1/offlinevalidation

Accept: application/json

{

"jsondata": "."

}

201 CREATED

Content-Type: application/json

{

"status": "NotValidated",

"uuid": "bb42e4ba-c8b7-4a5c-98b3-1f384aae2b69", "created_at":

"2016-02-03T02:05:28.384274", "updated_at": "2016-02-

03T02:05:51.880785",

"jsondata": "{}", "validationstatus": { "status": "PASS",

"Software_Validation": [], "Hardware_Validation": []

}

}

https://:8445/v1/offlinevalidation

 133

Retrieve the Results of Offline Validation

Resource URI

Verb URI

GET /v1/offlinevalidation

Property:

id—The ID of the node you want to retrieve.

Example

JSON Request
GET /v1/offlinevalidation/789 Accept: application/json

Curl Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Password> -H 'Accept:
application/json' -H 'User-Agent: python-ciscovimclient' --cacert 'C:\certificates\<mercury-ca.crt
path>' https://<br_api ip>:8445/v1/offlinevalidation/<uuid>

JSON Response

200 OK

Content-Type: application/json

{

"status": " ValidationSuccess",

"uuid": "bb42e4ba-c8b7-4a5c-98b3-1f384aae2b69", "created_at": "2016-02-

03T02:05:28.384274", "updated_at": "2016-02-03T02:05:51.880785",

"jsondata": "{}", "validationstatus": { "status": "PASS",

"Software_Validation": [], "Hardware_Validation": []

}

}

 134

Copyrights
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO
CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS
MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY
PRODUCTS.
THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH
IN THE LICENSE AGREEMENT SIGNED BETWEEN THE PARTIES.
NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE
SUPPLIERS ARE PROVIDED “AS IS” WITH ALL
FAULTS. HCLSOFTWARE AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR
TRADE PRACTICE.
IN NO EVENT SHALL HCLSOFTWARE OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL,
CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR
LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF
HCLSOFTWARE OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be
actual addresses and phone numbers. Any examples, command display output, network topology
diagrams, and other figures included in the document are shown for illustrative purposes only. Any use
of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
HCLSOFTWARE Logo is trademark of HCL Technologies Ltd., and/or its affiliates in the U.S. and other
countries.
Third party trademarks mentioned are the property of their respective owners. The use of the word
partner does not imply a partnership relationship between HCLSOFTWARE and any other company.

 Copyrights @HCL Technologies Ltd., 2025 All rights reserved.

