HCLTech

REST API Guide for Virtualized Infrastructure

Manager, Version 6.0
First Published Date: November 18, 2025

HCLTech

Contents

VIM REST API GUIA@ccooiiiiiiiiieeeeeee ettt 9
REST APT OVETVIEWviiiiiiiiiiiiieeeeeeiiiieeee e e eeiirteeeeeesirreeaeeseenesveeeessennnens 2
VIM REST API Using Curl for IPV6Occccvvvviiiiiiiiiiieiiieeeeeeeee e 4
| 34 S (10 LB S LT PP 4
Offline Validation using Curl 5
Start New Installationccooeeeiiiiiiiiii e, 6
Pod Management OPETationsevvereeeerrrerreeererreeereererrererreeeereeerrer... 7
34 S (10 L0 S LT P PPPPPRPPPPP 7
Update Setup Data..........uuuunniiiiii s 8
Add COMPULE ...oviiiiiiiiiiiiiiiiiiieieeeeeeeee ettt eeeeeeeereaeeeeseeeaesresarersrassarreesareaaees 8
Addd STOTA@E....uvviieiiiieeee e e e e e e e a e s 9
RemOVE COMPULEceeeiiiiieeeeeeeee e 9
REMOVE StOTAZEvvvvvviiiiiiiiiiiiiiiiiieieieeeeeeeeee e eeeeeeeeaees 10
Fetch Hardware INVeNtoryuvvviiiiiiiiioiiiieeeee e 11
VIM REST API Using Curl for IPv4oovvvviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 18
Nodes APIs and Commands...........ccceevveieiieeeriieiiiiiiieeeeee e 18
Power Status of NOdeS......cccevvviiiiiiiiiieeee e 20
List Openstack Configuration Commandceevvvvevivrivreveireeeeeenenee. 21
Cluster RECOVETY cooiiiiiiiiiiii 21
Last-Run-Status Command.............ccceeeerieiiiiiiiiiiiiiieeeeee e 22
Reconfigure Regenerate SeCTetSuvvviviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 22

Reconfigure Set Openstack Configurationccccceeeeeeiieeicccciniienenenen.. 23

HCLTech

Reconfigure CIMC PassSwWoOrd............uuuvvvviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeens 24
APT RESOUICES ...vvviiiiiiieeee et e e e e e e e e e e e e e et as 26
SEIUPAALA e 26
Creating Setupdata................oooii 27
Retrieving a Single Setupdata...............eevviiiiiiiiiiiiiiiiiiiiieieeeieeeeeeeeeeeeeeeeee 28
Updating a Setupdata...........ccccvvviiiiiiiiieiieieeeeeeee e 29
Deleting a Setupdata.............eevvvviiiiiiiiiiiiiiiiiiiiiiiieereeeeerreeeerereeeeee———————— 30
INStall RESOUICEevvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee e ee s 31
Return a List of Installationeeevviiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeee 31
Create an Installation.................... 32
Retrieve the Installationccceevvviiiiiiiiiiiiiiiieee e 33
Stop the Installationcoooeeeiiiiiiiieeeeeeeeee e 34
INOACS. . nnann 35
Getting a LiSt 0f NOAES.......uuiiiiiiiiiiiiieiieeee e 35
Add NEW NOAES ...ovvviiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeee e e eeeeeeeeeesreaeeeaeeaeees 36
Retrieve Information about a Particular Nodeoovvviiiiiiiiiiiiiiinnnnne. 37
RemMOVE @ NOAEovviiiiiiiiiiiiiieeeeeeee e 38
Replace @ Controller..........uvviiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeee e eeeeeeeees 40
Offline Validation.................ccc 41
Create an Offline Validation Operation.........................c . 41
Retrieve the Results of Offline Validation..............ccccvvvvvvviviiiiiiiiiiiiiinnnee, 42
|8 06 b 1 IR PPPPPUPPPPPPPPP 43
Roll Back an Update............euviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenees 44
Commitan Update...........cooiiiiii 45

HCLTech

N L) 1 1R 46
OpenStack Configs ... 47
V5] 53 10 USSR 48
Health of the Management Node...............oevvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee, 48
Hardware Informationcccvvviiiiiiiiiiiicceeeee e 49
Create a HWINfo Operationcooeeceiiiiiiiiiiieeeee e 49
Retrieve the Results of Hwinfo Operation................evvvvvvvvivivevevivivenenennee. 49
Release Mapping Information................eeveveeiiiiiiiieiiiiriieiieeeeeeeeeeereeeeeeeeeeee. 50
POST Install Operationsevviviviiiiiiiiiiiiiiiieireeeeerreeeerereeeeeeereeeee————. 51
Create a Post install Operationccccooi 51
Retrieve a Status of the Post Install Operation...............ceevvvvvvevvvreevnnennneee. 52
NFVBench Network Performance Testing........cccooeeeeeeeiiiiiiiiiiiiiiieeieennnns 52
Create NFVBench Run...........oooviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 52
REST API To Create Fixed Rate Testcvvviiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee, 53
Status POING.......eeeiiiiiiiiiiieeeeeeee e e 55
REST API To Get Fixed Rate Test Result.............ooevvviiiiiiiiiiiiiiiiiiiiineneee, 55
REST API To Get NDR/PDR Test Resultscoovvvviiiiiiiiiiiiiiiiiiiieeneneee, 57
REST API to Get Node Hardware Information.............ccccccvvvvvviiieiinnnnnee. 58
REST API to Get Mandatory Features Mappingeeevvevevvvveveeenenne. 58
REST API to Get Optional Features Mapping..............eeevvvvvevevvvreeeevennnnen. 59
Cloud Sanity Informationccccooi 60
Create a cloud-sanity Test............ccooiiiiiii 60
Retrieve a Status of the Post Install Operation...............ceevvvvvevevvrirrveenenene. 60
List Specific cloud-sanity Test Results.............ovvvvvviiviiiiiviiiiiiiiiiiiieeeeeenee, 61

Show cloud-sanity Test ReSults.......cccooeeeeiiiiiiiiiiiiiiiccccc 62

HCLTech

Delete cloud-sanity Test Results.............evvvviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee, 62

Disk Maintenance informationcccceeeeeeeciiiiiiiieieeee e 63

Create a Check Disk Operation..............ccccooooi 64
Create a Replace Disk Operation.............eeevvevevviiiiieiiiieirieieeeeeeeeeeeeeeeeeeeeenee. 64
List Check Disk Operationeevvvviiiiiiiiiiiiiiiiirreeeeeeeeeeeeeeeeeeeeereeeeeee.. 65
Show a Completed diskmgmt Operationccoeeecvviiiiiiieeieeee e, 66
Delete a Completed diskmgmt Operation...............eeevvvevvvveeveeeeveeeveeeeveennne. 66
OSD Maintenance Information.............cccccoviiiiiiiiieeiieiieiiieeeee e 67
Create an OSD Disk Operation..............eevvvvvveeerereeeerreeeeeeeeeeeeeeeeeeeeereeeeeeeee. 67
Create a Replace OSD Operation.............eeevvvvveveerveeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeee. 68
List Check OSD Operationuuvvvvvvevrrieirieerrrreerrreeerrereeererereeeeeeee————.—. 68
Delete a Completed osdmgmt Operation...............eeevvevevveveeeeeeeveeeeeeeereeenne. 70
Hardware Management Uityoevvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 70
Create a Validate Operation...............eevvvviiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeees 70
Create a Validate Operation for Failure...........cccccovvvvviiiiiiiiiiiiiiiiiiiiiiiieeee, 71
List a Validate Operation...............euvvvviiiiiiiiiieiieieeeeeereeeeeeereeeeeerrereeereeree... 72
Show a Completed hardwaremgmt Operationcccccvvveveeeeeeeeeeeecnnnnnne, 72
Delete a Completed hardwaremgmt Operation............cccceeeeeeeeeecnvnnvnneeennn.. 73
List PassSWOrd SECTELSccccueeiiiiiiiiiiieeeee e ee s 74

Hardware Management Uityoevviiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeee 74
Create a Validate Operation..............ceevvvvvviiviiiieiiieieeieeeieeeeeereeeereeeeeeeereeeee. 74
Create a Validate Operation for Failure..............ooovvvvviiiiiiiiiiiiiiiiiiiiiniiinene, 75
Show a Completed hardwaremgmt Operationl. 77

Disk and OSD MaINteNanCeceeeeeeeeeeereiiiiiiiiiiieeeeeeeeeeeeeeseneevnnneeeeeeens 81

Disk Maintenance 1NfOrmationoeeveeeeeeeeeeee e ee e e e e e eeeeeeaeeanns 81

HCLTech

Create a Check Disk Operation..............eeevveviiiiiiiiiiieiiieieieeeeeeeeeeeeeeeeeeeeeeeeess 81
Create a Replace Disk Operation.............eeevvevevviiiiieiirieieieiieeeeeeeeeeeeeeeeeeeenes. 83
List Check Disk Operationeevevviiiiiiiiiiriiiiieeieeeeeeeeeeereeeeeeeeeeeereeeee.. 84
Show a Completed diskmgmt Operationcl. 85
Delete a Completed diskmgmt Operation...............eeevvvvvvvvveveveeveveeeeeenenennee. 86
Create an OSD Disk Operation............ccccecuviiiiiiiiieeee e e e e e e 87
Create a Replace OSD Operation.............eeevvveeeveeeeeereeeeeeeereeeeeeereeeeeeeeeeeeeee. 88
List Check OSD Operationuvvvvvvvirrieirerirrererrrrerereerererererereee————.—. 88
Show a Completed osdmgmt Operationccooeeeiii, 89
Delete a Completed osdmgmt Operationeevvvvveveeveeeeeveeeeeeereereeenne.. 90
Cloud Sanitycoooiiiiii 90
Create a cloud-sanity Test..........coviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 91
List cloud-sanity Test ReSUItS............uviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 91
Show cloud-sanity Test Results.........ccccuvviiiiiiiiiiiiiiiieeee e, 94
Delete cloud-sanity Test ReSults..........ccoovveeiiciiiiiiiiiieeeeeeeeeeeeeee, 95
Mandatory/Optional Feature Mapping..........ccccccvveveeeieieieeeeeeieciiiieeeeeenn. 96
Mandatory Feature Mappingcceeeeeeeeeiieiiiiiiiiiiieeeee e 96
Optional Feature Mappingccooeeeeeeiiiiiiiiiiiiieeeee e e e e e e e e 97
Testing and PoOllINg..........ooooviiiiiiiiiieeeeeeeeeeeeeeeeee e 98
NFVBench Network Performance Testing........cccoeeeeeeeeiiiiiiiieieiiiicccnnnns 98
Create NFVBench RUn...........oooiiiiiiiiiiiiie e 98
Status Polling............. 99
Post-Installation OPerationseevevveeivierereeieeerereeeeeerereeeeeeeeeeeeeeee.. 103
Create a Post Install Operation 103

Retrieve Post Install Operation Statuscevvvvvveveirieveeeieneeeeeeeeeeeenee, 104

HCLTech

Version and Hardware Information..............ccccevvviiviiiiiiiiiiiiiiiiiiiiieeeeeeee, 105
Hardware Informationcccceeeiiiiiiieieiiceeeee e 105
Create a HWInfo Operationcevvvvviiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeennes 106
Retrieve Hwinfo Operation Results..............ovvvviiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeee, 106
Get Node Hardware Informationcccecciiiiiiiieiiiie e, 107
OPENSLACK SETUP ...veiiiiiiiiiiieeee e e e e e e e 108
SECTELS i 108
Retrieve the List of Secrets that are Associated with the OpenStack Setup
.. 108
OpenStack Configurationcccoooii 109
Retrieve the List of Configurations Associated with the OpenStack Setup
.. 109
Release Mapping Information................eevvvviiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeee 109
UPAAte ... e e e e 111
Start an Update PrOCESScccoeeeeeieeeieeeiecececeeeeeeeee e 111
ReSOUrce URIooiiiiiiiiiiiiiiiiiiiiiieeeeee et eeeees 111
Roll Back an Update............eevviiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeveveeeeeeeeeeeees 112
Commit an Update..........coooeiiiiiiiii 112
Retrieve the Details of an Updateoovvvviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeveeeeeee, 113
INStall RESOUICE ..cceeeieieiieeeeeee e 114
Retrieve Information About a Particular Nodeoevvvviiiiiiiiinnnnene. 114
INStall RESOUICEcooveeiieiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 115
Return a List of Installationcccccvvviiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeee 115
Create an Installation..................... 116
Retrieve the Installation................eevviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 117

Nodes and Replace Controller............ooovvciiiiiiiiiniiiiiieeeeeiieee e, 120

HCLTech

INOAES e eeiiieeieeeec et e e e e e e e e e e e st rrrr e e e e aaaeeeeeeennnnnnnnes 120
Getting a List of Nodes.........oooooiiiii 120
Add NeW NOAES ..cooviiiieeeeeee e 121
RemMOVE @ NOAE ..oooiiiiieeee e 122
Replace @ Controllervvvviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 125
Setupdata and Offline Validationccoovvieiiiiiiiiiiiiieeieeeeeeeeeee, 127
SEIUPAALA ... 127
Retrieving the Setupdata...............oevviviiiiiiiiiiiiiiiiiiiiiiiieeeeeeee e 127
Creating Setupdata...........ooeviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 128
Retrieving a Single Setupdata...............evvvviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 129
Updating a Setupdata.............euuuennnnnuinic e 130
Deleting @ Setupdata.............evvviiiiiiiiiiiiiiiiiiiiiiiieireeeeeeeeeeeeeeereeeeeeerereaeeee——— 131
Offline Validation...................... 132
Create an Offline Validation Operation...........................l 132

Retrieve the Results of Offline Validation.........ccoveveeeieeieieieeiieeeaannn, 133

HCLTech

VIM REST API Guide

The following sections explain about how VIM REST API is used to manage NFVI.

REST API Overview

. VIM REST API Using Curl for IPv6
e VIMREST API Using Curl for IPv4

. API Resources

HCLTech

REST API Overview

A Representational State Transfer (REST) APl is used to install, expand, and update VIM. Actions
performed using the REST APlIs are:

o Install VIM on NFVI pods.

o Add and delete pods to and from NFVI during installation.
o Update VIM software.

o Replace controller nodes.

o Perform cloud maintenance operations.

Run cloud validations using Virtual Machine Throughput (VMTP). VMTP is a data path performance
measurement tool for OpenStack clouds.

The following figure shows the workflow of VIM REST API.

wsgi

REST API

Apache | ssl (PECAN BASED)

—_—
(@)

Daemon Installer

SQLite

The VIM REST API security is provided by the Secure Sockets Layer (SSL) on the Apache web
server. The mod_wsgi running on the Rest API server calls the Pecan-based web application. The
Pecan REST API server requires a username and password to authorize the REST API server
requests.

Apache handles the authorization of the request to access the Pecan web application. Use the VIM A
Pl to:

Upload a new setup_data.yaml file to start, stop, or query the state of the installation.
Manage the cloud.

Add/remove compute and Ceph nodes and replace the controller nodes.

2

HCLTech

Launch VMTP (L2/L3 data plane testing) and CloudPulse.

The VIM REST API is enabled by default in the management node if you are using the supplied VIM
buildnode.iso. You can access API server on the br_api interface on port 8445. The authentication is
enabled by default on the web service.

You can access the API end points using the following URL format:
https://<Management node api ip>:8445

By default, the basic authentication is enabled for the API endpoints in the management node. You
can find the authentication credentials in the following file in the management node:

/opt/cisco/ui_config.json

The following code shows a sample ui_config.json file.
{
"Kibana-Url": "http://10.10.10.10:5601", "RestAPI-Url": "https://
10.10.10.10:8445",
"RestAPI-Username": "admin",
"RestAPI-Password": "a%96e86ccb28d92cebldf", "RestDB-Password":
"e32de2263336446e0£57", "BuildNodeIP": "10.10.10

HCLTech

VIM REST API Using Curl for IPv6

e Prerequisites
e Offline Validation using Curl
e Start New Installation
e Pod Management Operations
e Prerequisites
e Update Setup Data
e Add Compute
e Add Storage
¢ Remove Compute
e Remove Storage
e Replace controller
e Fetch Hardware Inventory

e Glance Image Upload

Prerequisites

1. You need to copy the certificates from the management node to local machine from where you would launch
the APIs.
2. Create a folder in local machine and copy the certificates:

mkdir ~/certificates

3. Copy REST API CA Certificates (for mercury commands)

scp root@<Management Node>:/var/www/mercury/mercury-ca.crt
~/certificates

1 The key information that you need are br_api and cloud_api (external_Ib_vip_ipv6_address).

4. For each POD, get the REST API credentials:

ClTech

cat /opt/cisco/ui config.json

{

"Kibana-Url": "https://[2001:420:293:2433:172:29:85:110]:5601",

"RestAPI-Username": "admin",

"RestAPI-Password": "c9686a8f3cad6644ae95",

"RestAPI-Url":
"https://[2001:420:293:2433:172:29:85:110] :8445", "BuildNodeIP":
"2001:420:293:2433:172:29:85:110". —----> br api

Offline Validation using Curl

1. Create offline validation test.
Request
Curl Command:
curl -g -i -X POST -H "Content-Type: application/json" -u admin:<Password> -H "Accept: application/json" --cacert
'C:\<mercury-ca.crt payh>' -d "{\"jsondata\": $(cat setup_data.json)}" https://<Pod IP>:8445/v1/offlinevalidation

Response

{"status": "NotValidated", "uuid": "2b8253f4-ad9f-4fbf-b224-
a65pd210392a", "created at":

"2019-02-28T18:02:36.808740+00:00", "updated at": null,
"jsondata": "{}"}

2.Get the offline validation test result:

Request
{"status": "ValidationFailed", "uuid": "2b8253f4-ad9f-4fbf-
b224-a65bd210392a",
"created at": "2019-02-28T18:02:36+00:00", "updated at": "2019-
02-28T18:02:57+00:00",
"jsondata": ""}

Curl Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Password> -H 'Accept: application/json' -H 'User-
Agent: python-ciscovimclient' --cacert 'C:<mercury-ca.crt path>' https://<Pod
IP>:8445/v1/offlinevalidation/<UUID

Response

ClTech

Start New Installation

1. Create new setup data before starting new installation, for example

curl -g -i -X POST -H 'Content-Type: application/json' -u
admin:46d13357ef15e5482b52 -H 'Accept: application/json' -H
'User-Agent: python-ciscovimclient' --cacert

~/certificates/mercury-ca.crt -d '{u'meta': {}, u'name':
u'NEWSETUPDATA', u'jsondata': {<SetupData in JSON Format>}}"

https://[2001:420:293:2440:0696:91ff:fe22:2dd8] :8445/setupdata

2. To start the installation:

Request:

Curl -g -1 -X POST -H 'Content-Type: application/json'
admin:46d13357ef15e5482b52 -H 'Accept: application/json' -H
'User-Agent: python-ciscovimclient' --cacert

~/certificates/mercury-ca.crt -d '{u'stages': u'vmtp',
u'setupdata': u'8b0d4ad6-c67f-4121-9%af- 32fde52a82eb'}’

https://[2001:420:293:2440:0696:91ff:fe22:2dd8]:8445/install

Response:

{u'uuid': u'eb02c2ab-441e-471a-9dcc-e771136186el', u'setupdata':
u'8b0d4ad6-c67f-4121-99%9af-32fde52a82eb', u'vmtpresult': u'',
u'updated at': None, u'validationstatus': u'', u'currentstatus':
u'Not Available', u'install logs': u'', u'stages': {u'baremetal':
u'Scheduled', u'bootstrap': u'Scheduled', u'runtimevalidation':
u'Scheduled', u'ceph': u'Scheduled', u'orchestration':
u'Scheduled', u'validation': u'Scheduled', u'hostsetup':
u'Scheduled', u'vmtp': u'Scheduled'}, u'created at':
u'2019-03-05T05:22:30.986823+00:00"}

3.Get active setup data with UUID after installation is started:

Request:

curl -g -1 -X GET -H 'Content-Type: application/json' -u
admin:46d13357ef15e5482b52 -H

'"Accept: application/json' -H 'User-Agent: python-
ciscovimclient' --cacert

~/certificates/mercury-ca.crt
https://[2001:420:293:2440:0696:91ff:fe22:2dd8] :8445/setupdata

HCLTech

{"created at": "2019-03-04 21:35:00+00:00", "updated at":
"2019-03-04 21:36:24+00:00",
"reboot required": false, "update status": false,
"current op logs": "", "current op status": "diskmgmt completed",
"insight monitor status": "Success", "current op name":
"DiskMgmt", "current op monitor": ""}
Response
It will return to the list format. You must check the status. The status can be Active, Installation Failed,or Installing.
{"setupdatas": [{"status": "Active", "uuid": "c5bc5fd9-6f4b-
43e7-a61a-a9d409569943", "jsondata": " {<Setupdata JSON>}",
"meta": "{}", "name": "NEWSETUPDATA"}]}

4.Monitoring the installation using OP-information (current operation information):

Request:
curl -g -i -X GET -H 'Content-Type: application/json' -u
admin:46d13357ef15e5482b52 -H 'Accept: application/json' -H
'User-Agent: python-ciscovimclient' --cacert
~/certificates/mercury-ca.crt
https://[2001:420:293:2440:0696:91ff:fe22:2dd8]:8445/0op_info
Response:

Check for the value of key insight monitor_status. If it is Running, it indicates that the last operation is still in
running state. Once the operation is completed, the value is either Success/Failed based on the result.

{u'created at': u'2019-02-25 18:15:00+00:00"', u'updated at':
u'2019-02-25 18:15:00+00:00",
u'reboot required': False, u'update status': False,
u'current op logs':
u'https://[2001:420:293:2440:b696:91ff:fe22:2dd8]:8008/mercury/ae
3ed699-2ffe-4ae0-a8ab-83ef7fdcel08",
u'current op status': u'Running', u'insight monitor status':
u'Running’',
u'current op name': u'install op Orchestration',
u'current op monitor':

Sample output information after successful completion is given below:

Pod Management Operations

Prerequisites

Before performing any pod management operation, you need to update the setup data using
PUT method.

HCLTech

Update Setup Data
1. Get the active setup data UUID using the install API.

Request:

curl -g -1 -X GET -H 'Content-Type: application/json' -u
admin:46d13357ef15e5482b52 -H

'"Accept: application/json' -H 'User-Agent: python-
ciscovimclient' --cacert

~/certificates/mercury-ca.crt
https://[2001:420:293:2440:0696:91ff:fe22:2dd8]:8445/install

Response:
{u'installs': {u'uuid': u'bb02c2ab-441e-471a-9dcc-

e771136186el', u'setupdata': u'8b0d4ad6-c67f-4121-99%af-
R2fde”h?2al?2ebh'. . . 11}

2. Send the PUT request on the setup data UUID

curl —-g -1 -X PUT -H 'Content-Type: application/json' -u
admin:46d13357ef15e5482b52 -H

'"Accept: application/json' -H 'User-Agent: python-
ciscovimclient' --cacert

~/certificates/mercury-ca.crt -d '{u'meta': {}, u'name':
u'NEWSETUPDATA', u'jsondata':

{<Setupdata JSON>}}'

https://[2001:420:293:2440:b696:91ff:fe22:2dd8] :8445/setupdata/

Note: Change the setup_data.yaml file into json using below steps
Step 1. Get current setupdata
Step 2. Convert setupdata string generated from step 1 into json file format
You can perform the following pod management operations:
e Add Compute
e Add Storage
e Remove Compute
e Remove Storage
e Replace Controller
Add Compute

1. List the nodes.

ClTech

Request

curl -g -1 -X GET -H 'Content-Type: application/json' -u
admin:46d13357ef15e5482b52 -H

'"Accept: application/json' -H 'User-Agent: python-
ciscovimclient' --cacert

~/certificates/mercury-ca.crt
https://[2001:420:293:2440:0696:91ff:fe22:2dd8]:8445/nodes

Update new setupdata with node manually, follow steps given in the prerequisites to manual update
the setupdata

curl -1 -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent:
python-ciscovimclient" -u admin:<rest api admin password> --cacert <mercury cert path> -d
@<payload in json file format> https://<br_api of the pod>:8445/setupdata/<setupdata uuid>

Run below command to add node into the cluster

curl -i -X POST -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent:
python-ciscovimclient" -u admin:<Rest APl admin password> --cacert <mercury certificate path> -d

n,n n.n

I{"naf‘ﬂe : "<Node name> , Skip_thp”: faISE}l https://<br_api>:8445/nodes/add compute

1.POST to nodes to add entry:
Add Storage

1. Follow the steps 1 and 2 given in the add compute as mentioned above
2. Execute below command to add storage into the storage cluster

curl -i -X POST -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent: python-
ciscovimclient" -u admin:<Rest APl admin password> --cacert <mercury certificate path> -d '{"name": "<Node
name>", "Skip_thp": false}' https://<br_api>:8445/nodes/add compute

3. POST to nodes to add entry:

Remove Compute

List the nodes:

Request:

curl -g -1 -X GET -H 'Content-Type: application/json' -u
admin:46d13357e£f15e5482b52 -H

'Accept: application/json' -H 'User-Agent: python-
ciscovimclient' --cacert

~/certificates/mercury-ca.crt
https://[2001:420:293:2440:0696:91ff:fe22:2dd8] :8445/nodes

Response:

HCLTech

{"nodes": [{"status": "Active", "uuid": "1929776f-8b77-4b35-b55c-
0abd6433b989",
"setupdata": "8b0d4ad6-c67f-4121-99af-32fde52a82eb", "node data":

"{\"rack info\":

{\"rack id\": \"RackC\"}, \"cimc_info\": {\"cimc ip\":
\"172.29.172.81\"},

\"management ip\": \"21.0.0.13\"}", "updated at": "2019-03-
04T21:42:38+00:00",

reboot required": "No", "mtype": " block storage", "install":

"6b02c2ab-441le-471a-9dcc-e771136186el", "power status":
"PowerOnSuccess", "install logs":
"https://172.31.231.17:8008/mercury/071e79a5-b279-4628-bcf0-
dfl168152cc42", "created at":

"2019-03-05T05:42:38+00:00", "name": "compute-3"}, . . . 1}

1. Remove the node entry in setup data and update the setup data by following the steps given under
prerequisites.

2.. Send delete request on nodes, to remove the storage node for that UUID:

Remove Storage

curl -g -1 -X DELETE -H 'Content-Type: application/json' -u
admin:46d13357e£15e5482b52

-H 'Accept: application/json' -H 'User-Agent: python-
ciscovimclient' --cacert

~/certificates/mercury-ca.crt -d '{u'force op': False, u'name':
u'l929776£-8b77-4b35-b55¢c-0abd6433b989"'}"

https://[2001:420:293:2440:0696:91ff:fe22:2dd8] :8445/nodes/remo
ve compute

1.Get the UUID of the node to be removed by getting the list of nodes.

2.Remove the node entry in setup data and update the setup data using steps mentioned in the
prerequisites.

3.Send delete request on nodes, to remove the storage node for that UUID.

Request

curl -g -i -X GET -H 'Content-Type: application/json' -u
admin:46d13357ef15e5482b52 -H

'"Accept: application/json' -H 'User-Agent: python-
ciscovimclient' --cacert

~/certificates/mercury-ca.crt
https://[2001:420:293:2440:0696:91ff:fe22:2dd8]:8445/nodes

Response:

10

HCLTech

“"nodes" curl —-g -1 -X DELETE -H 'Content-Type: application/json' -u
0ddb72bdadmin:46d13357e£15e5482b52

"node da -H 'Accept: application/json' -H 'User-Agent: python-
‘\"rack ciscovimclient' --cacert

\"172.29 ~/certificates/mercury-ca.crt -d '{u'force op': False, u'name':
\"manageu'O0b7b2b6e-305c-48e0-b9f3-0ddb72bd3b3f"'}"’
04T21:42https://[2001:420:293:2440:0696:91ff:fe22:2dd8] :8445/nodes/remove
"install storage

"6b02c2ab-441e-471a-9dcc-e771136186el", "power status": "PowerOnSuccess",

"install logs":
"https://172.31.231.17:8008/mercury/071e79a5-b279-4628-bcf0-
df168152cc42", "created at": "2019-03-05T05:42:38+00:00", "name": "Store-

3"y, oo o1}

Replace Controller:
1. Remove the node entry in setup data using steps mentioned in the prerequisites.
Execute below command to update setupdata

curl -1 -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent:
python-ciscovimclient" -u admin:<Rest api admin passwd> --cacert "<mercury cert file path>" -d
@<setup data in json format> https://<br_api ip>:8445/setupdata/<setupdata uuid>

2.Put nodes to replace entry
3.Send delete request on nodes, to remove the storage node for that UUID.

Request:

{"nodes": [{"status": "Active", "uuid": "79e43c4c-8cbd-4c81-8c22-
3aec717298e9", "setupdata": "8b0d4ad6-c67f-4121-99%af-
32fde52a82eb", "node data": "{\"rack info\":

{\"rack id\": \"RackC\"}, \"cimc_info\": {\"cimc ip\":
\"172.29.172.81\"},

\"management ip\": \"21.0.0.13\"}", "updated at": "2019-03-
04T21:42:38+400:00", "reboot required": "No", "mtype": " control",
"install":

"6b02c2ab-441e-471a-9dcc-e771136186el", "power status":
"PowerOnSuccess", "install logs":
"https://172.31.231.17:8008/mercury/071e79a5-b279-4628-bcf0-
dfl168152cc42", "created at": "2019-03-05T05:42:38+00:00", "name":
"gg34-10"}, . . . 1}

Fetch Hardware Inventory

Request:

11

ClLTech

curl -g -1 -X GET -H 'Content-Type: application/json' -u
admin:46d13357ef15e5482b52 -H

'"Accept: application/json' -H 'User-Agent: python-ciscovimclient' -
—cacert

~/certificates/mercury-ca.crt
https://[2001:420:293:2440:0696:91ff:fe22:2dd8] :8445/v1/hwinfo

= {JJsonN
= () hwinforesult
= {} ¢37-control-2.cisco.com
® cimc_ip : "172.26.229.62"
= () firmware
® serial_number : "FCH2037V3U9"
® fw_version : "C240M4.3.0.4b.0.0610182318 "
u fw_model : "UCSC-C240-M4S8"
d () storage
= {3 physical_drive-1
® status : "Online”
vendor : "SEAGATE"
interface_type : "SAS™
serial_number : "S402LC7Y0000E7093S5G"
media_type : "HDD"
model : "ST1200MM0088"
= size : "1143455 MB~
41 {3 physical_drive-2
= () intel_nw_adapters
= {3} adapter-2
® num_of_interfaces : "4
® product_name : "Cisco(R) Ethernet Converged NIC X710-DA4™
o () mac_address
=) (} adapter-1
= {3 memory
® total_memory : “262144"
& available_memory : “262144"
= () cpu
® number_of_cpus : "2"
® number_of_ threads : "48"
® cores_per_cpu : 12
® number_of_cores : "24"
= {) power_supply
® power_state : “on"
= () c37-control-1.cisco.com
e C) c37-compute-4.cisco.com
£ C} c37-control-3.cisco.com
o {) c37-storage-2.cisco.com
) C} c37-storage-1.cisco.com
4 {} e37-compute-2.cisco.com
4 { } c37-compute-1 cisco.com
@ { } ¢37-compute-3.cisco.com
£ {) ¢37-storage-3.cisco.com
£ C} c37-compute-6.cisco.com
& {) c37-compute-5.clsco.com

Glance Image Upload

12

HCLTech

Use Rest APIs to upload and delete multiple images to/from the cloud. Following is the REST API
that are available for usage.

POST /upload

This APl is responsible for uploading the image to respective Openstack Cloud.

JSON Payload

{
"podsip":["172.31.231.17",

"10.30.116.244",

I

"images": [

"xxxxxx.iso", "yyyyyy.gcow2",
]

}

Response
{"Upload":true}

CURL Request

curl -s -k -X POST -d '{"upload": {"podsip":["172.23.105.218",

"172.29.85.78"],"images" : ["buildnode-internal-20606.is0o","CentOS-7~-
x86 64-GenericCloud-1503.gcow2"]}}"'

-H "Auth: <Token>" https://172.29.85.78:9001/upload

Following is an example Curl request.

curl -s -k -X DELETE -d {"upload": {"podsip":["172.23.105.218",
"172.29.85.78"],"images":["buildnode-internal-20606.is0","CentOS-7-x86_64-GenericCloud-
1503.qcow2"]}}'-H "Auth: " https://172.29.85.78:9001/upload

Delete/Upload

This APl is responsible for deleting the image from respective Openstack Cloud.

JSON Payload

13

https://172.29.85.78:9001/upload

HCLTech

{

"podsip":["172.31.231.17",
"10.30.116.244",

1y

"images": [

"xxxxxxX.1iso0o", "yyyyyy.gcow2",

]
}

CURL Request

Following is the example Curl request:

curl -s -k -X DELETE -d '{"upload": {"podsip":["172.23.105.218",
"172.29.85.78"],"images": ["buildnode-internal-20606.is0o", "CentOS-7-
x86 64-GenericCloud-1503.gcow2"]}}"

-H "Auth: <Token>" https://172.29.85.78:9001/upload

Response

{"Delete":true}
GET /upload:

This APl is responsible for getting the image list from respective Openstack Cloud. Following
are the query string parameters to be passed with GET URL:

1. odsip: It is a comma separated string which represents pod IPs, whose Openstack image list needs to be
fetched.

2. images: It is a comma separated string which represents Openstack images whose status needs to be fetched.

3. refresh: Takes the value true or false. Used to get updated Openstack images list.

Following are the CURL request examples:

Example 1

14

LTech

curl -s -k -H "Auth: <Token>"
https://172.29.85.78:9001/upload
This gives the result of pods on which upload/get/delete
operation are performed.
{
"uploaded": {
"172.29.85.78": {
"opsinprogress": 0,
"images": null,
"error": ""
by
"172.23.105.218": {
"opsinprogress": O,
"images": null,
"error": nmn

15

HCLTech

Example 2:

curl -s -k -H "Auth: <Token>"
https://172.29.85.78:9001/upload?"podsip=172.29.85.78"

{

"uploaded": {

"172.29.85.78": {

"opsinprogress": 0, "images": [

{

"OSStatus": "active", "UploadStatus": "UploadSuccess", "ErrStatus":

"ID": "c50284d7-191a-42ed-a289-9b52d19b9£fd5",

"Name": "buildnode-internal-20606.iso"

br

{

"OSStatus": "active", "UploadStatus": "UploadSuccess", "ErrStatus":

"ID": "feeddefc-684e-46ac-aa89-boe785faflb4d", "Name": "CentOS-7-
x86 64-GenericCloud-1503.gcow2"

}
I
"error": mww
!

Example 3:

curl -s -k -H "Auth: <Token>"
https://172.29.85.78:9001/upload?"podsip=172.29.85.78&refresh=true"
{
"uploaded": {
"172.29.85.78": {
"opsinprogress": 1,
"images": null,
"error": mw

16

HCLTech

Example 4:
curl -s -k -H "Auth: <Token>"
https://172.29.85.78:9001/upload?"podsip=172.29.85.78&
images=buildnode-internal-20606.1iso"
{
"uploaded": {
"172.29.85.78": {
"opsinprogress": 0,
"images": [

"OSStatus": "active",
"UploadStatus": "UploadSuccess",
"ErrStatus": "",

"ID": "c50284d7-191a-42ed-a289-9052d19p9£fd5",
"Name": "buildnode-internal-20606.iso"

}

1,

"error": ""

}

}

}

17

HCLTech

VIM REST API Using Curl for IPv4

e Getting REST API Username & Password
¢ Nodes APIs and Commands
e List Openstack Configuration Command
o List Password Secrets
e Cluster Recovery
e Last-Run-Status Command
e Reconfigure Regenerate Secrets
e Reconfigure Set Password
e Reconfigure Set Openstack Configuration
e Reconfigure CIMC Password
Getting REST API Username & Password

Use the following configuration to get REST APl Username and Password

cat /opt/cisco/ui config.json
{
"Kibana-Url": "https://172.26.229.73:5601", "RestAPI-Username":

"admin",

"RestAPI-Password": "ccb2dc6d82bde0754ee3", "RestAPI-Url":
"https://172.26.229.73:8445",

"BuildNodeIP": "172.26.229.73". ---> br api

}

Got credentials from /opt/cisco/ui_config.json file

Nodes APIs and Commands
List Nodes

Use the following curl command to get the node's status, power status, reboot status, and mtype |
nformation:

curl -i -X GET -u admin:**** -H 'Content-Type: application/json' -H 'Accept: application/json'
--cacert /var/www/mercury/mercury-ca.crt https://172.31.231.17:8445/v1/nodes

18

HCLTech

3| Jnodes

a()o
§ sixlus “Active”
B uuid "0952104.5037-4d00-9621.9¢2547535001"
¥ selupdata "3e97331edb 104 1a2.Saf4.1970a1114832"
¥ node_dala "(rack_info": [rack_id" "RackD"), "cime_info" (“cime_lp™ "172 29.172 74"). "management_" 21.00.157"
§ updated_at : "2018.01.07T07:58:11+00.00°
B 1eboo!_required - “No®
miype | “conkrol”
B inshall | "50471b15-5680-4125-9c42-050beJecSc 1e”
B power_siatus “PovwerOnSuccess”
¥ install_logs "hitps /117231231 17.8008/metcuryb7ebd397-ddTb-dcaf-bee a-Sa 10704d305¢"
B created_al | "2018-12.18T02 43 58400 00°
¥ pame "gg34.10°

s()1

#()2

4()s

a{)e

a()s

4()e

a()?

Response:

{"nodes": [{"status": ". . . . "name": "Store-2"}]}

Power OFF Nodes

To get the power off status of the nodes, use the below command:

curl -1 -X POST -H 'Content-Type: application/json' -u admin:**** -
H 'Accept:

application/json' --cacert /var/www/mercury/mercury-ca.crt -d
'{'status': 'PowerOff', 'force op': False, 'name': '<Node UUID>'}"'

https://172.31.231.17:8445/v1/nodes/node_power status

You can find the UUID of the node from the list nodes command.

Power ON Nodes

To get the power ON status of the nodes, use the following command:

19

HCLTech

curl -i -X POST -H 'Content-Type: application/json' -u admin:**** —

H '"Accept:
application/json' --cacert /var/www/mercury/mercury-ca.crt -d
'{'status': 'PowerOn', 'force op': False, 'name': '<Node UUID>'}"

https://172.31.231.17:8445/v1/nodes/node power status

You can find the UUID of the node from the list nodes command.

Power Status of Nodes

To get the Live status of the nodes, first send POST request to /v1/hwinfoAPI, and then place the
GET request on v1/hwinfo/get_nodes_power_status after a minute approximately.

Run the below commands to send the POST request and get the power status:

Request:
curl -1 -X POST -H 'Content-Type: application/json' -u admin:**** -
H 'Accept: application/json' --cacert /var/www/mercury/mercury-ca.crt
-d '"{}' https://172.31.231.17:8445/v1/hwinfo
curl -i -X GET -H 'Content-Type: application/json' —-u admin:**** —-H
'Accept: application/json'
-—cacert /var/www/mercury/mercury-ca.crt
https://172.31.231.17:8445/v1/hwinfo/get nodes power status
Response:
{'Store-3': {'intended power state': 'PowerOnSuccess',
'actual power state': 'on'}, }}
Reboot Node:
curl -1 -X POST -H 'Content-Type: application/json' -u admin:**** -
H 'Accept: application/json' --cacert /var/www/mercury/mercury-ca.crt

=@l

'{'status': 'Reboot', 'force op': False, 'name': '<Node UUID>'}"
https://172.31.231.17:8445/v1/nodes
/node_power status

20

ClLTech

Reboot Status:

' You can find the UUID of the node from the list nodes command.z

Use the following two commands, to get the reboot status of the node:

curl -1 -X POST -H 'Content-Type: application/json' -u admin:**** -
H 'Accept: application/json' --cacert /var/www/mercury/mercury-ca.crt

-d 'None' https://172.31.231.17:8445/v1/nodes/reboot status

curl -1 -X GET -H 'Content-Type: application/json' -u admin:**** -H
'Accept: application/json'

-—cacert /var/www/mercury/mercury-ca.crt
https://172.31.231.17:8445/v1/nodes

List Openstack Configuration Command

Request:
curl -1 -X GET -H 'Content-Type: application/json' —-u admin:**** —-H
'"Accept: application/json'
-—-cacert /var/www/mercury/mercury-ca.crt
https://172.31.231.17:8445/v1/openstack config
Response:

{"KEYSTONE VERBOSE LOGGING": true, "GNOCCHI VERBOSE LOGGING": true,
}

Cluster Recovery

Command:

21

HCLTech

curl -1 -X POST -H 'Content-Type: application/json' -u admin:**** -

H 'Accept:
application/json' --cacert /var/www/mercury/mercury-ca.crt -d
'"{'action': {'cluster-recovery': {'run-disk- checks': False}}}"'

https://172.31.231.17:8445/v1/misc

Response:

{'uuid': 'ae3be813-4fae-4510-8467-fab09%ac60d2b', 'created at':

'2019-01-07T08:17:01.229976+00:00"', 'updated at': None,
'operation status': 'OperationScheduled', 'operation logs': '',
'operation name': {'cluster-recovery':

{'run-disk-checks': False}}}

Last-Run-Status Command

Command:
curl -i -X GET -H 'Content-Type: application/json' -H
'Authorization: ****' —-H 'Accept: application/json' - H 'User-Agent:
python-ciscovimclient' --cacert

/var/www/mercury/mercury-ca.crt
https://172.31.231.17:8445/v1/op_info

Response:

{'created at': '2019-01-07 08:27:56+00:00"', 'updated at': '2019-01-
07 08:28:03+00:00",

'reboot required': False, 'update status': False,
'current op logs': 'https://172.31.231.17:8008/mercury/79c402d2-£156-
4ba2-8f17-ecl109401a538"', 'current op status': 'OperationRunning',
'insight monitor status': 'Running', 'current op name':
'Generate ssh keys', 'current op monitor':

'Runner Op Generate ssh keys'}

Reconfigure Regenerate Secrets

Command:

22

HCLTech

curl -1 -X POST -H 'Content-Type: application/json' -u admin:**** -

H 'Accept: application/json' --cacert /var
/www/mercury/mercury-ca.crt -d
'"{'action': {'regenerate secrets': '****' 'reconfigure': True}}'

https://172.31.231.17:8445/v1/misc

Response:

{'uuid': '83cf2700-275f-4c18-a900-96c36c4987aa', 'created at':
'2019-01-07T08:36:19.279425+00:00",

'updated at': None, 'operation status': 'OperationScheduled',
'operation logs': '',

'operation name': {'regenerate secrets': '****' = 'reconfigure':
True} }

Reconfigure Set Password

Request:
curl -1 -X POST -H 'Content-Type: application/json' -u admin:**** -
H 'Accept: application/json' --cacert /var
/www/mercury/mercury-ca.crt -d '{"action": {"setpassword":
{"HAPROXY PASSWORD": "***xxxu"} = "reconfigure": true}}'
https://172.31.231.17:8445/v1/misc
Response:

{"uuid": "16d89b9%e-cadc-4467-b1d8-5a8a60171d90", "created at":
"2020-06-30T16:51:17.316126+00:00",

"updated at": null, "operation status": "OperationScheduled",
"operation logs": "", "operation name": "{\" setpassword\":
{\"HAPROXY PASSWORD\": \"****\"} \"reconfigure\": true}"}

Reconfigure Set Openstack Configuration

Command:

23

ClLTech

curl -1 -X POST -H 'Content-Type: application/json' -u admin:**** -
H 'Accept:

application/json' --cacert /var/www/mercury/mercury-ca.crt -d
'"{'action': {'reconfigure': True,
'setopenstackconfigs':{'GNOCCHI VERBOSE LOGGING': True}}}'

https://172.31.231.17:8445/v1/misc

Response

{'uuid': 'Obbbeff7-76df-4444-a38a-8819a8b579%e4"', 'created at':
'2019-01-07T08:54:13.733254+00:00', 'updated at': None,

'operation status': 'OperationScheduled', 'operation logs': '',
'operation name': {'setopenstackconfigs':

{ 'GNOCCHI VERBOSE LOGGING': True}, 'reconfigure': True}}

Reconfigure CIMC Password

1. List down the setupdata and find UUID of active setupdata using the following command:

curl -i -X GET -H 'Content-Type: application/json' —-u admin:**** —-H

'Accept: application/json' --cacert /var/www/mercury/mercury-ca.crt
https://172.31.231.17:8445/v1

/setupdata

Response:

Response
3 [] setupaatas
a{)o

8 status “Actve”
® uuid | 3e87351e-4n1c-4122.9204. 09702 111 4932"
§ created_at: 2018-12-17721 38 5700 00"
8 updated_at: "2019.01-07T09 05.08+00.00
® pondata | "[CEPH_NAT™ true, "MECHANISM_DRIVERS™ “openvswich”, "TESTING _MGMT_CIMC_USERNAME" “admn
® meta)
8 name “NEWSETUPDATA®

2. Put the content of setupdata with new CIMC Password using the following command:

curl -1 -X PUT -H 'Content-Type: application/json' -u

admin:**** -H 'Accept: application/json' --cacert
/var/www/mercury/mercury-ca.crt -d '{'meta': {}, 'name':
'NEWSETUPDATA', 'jsondata':

{'external 1lb vip address': '172.29.86.9' . . .}, 'uuid':

'3e97381le-4blc-41a2-9af4-£f970al1f1493a"}"’
https://172.31.231.17:8445/v1/setupdata/3e9738le-4blc-41a2-9%9af4-
£970a1f1493a

24

ClLTech

3.Post on Misc API using the below command:

Request:
curl -1 -X POST -H 'Content-Type: application/json' -u
admin:**** —-H 'Accept: application/json' --cacert
/var/www/mercury/mercury-ca.crt -d '{'action':
{'reconfigure cimc password': True, 'reconfigure': True}}'

https://172.31.231.17:8445/misc

Response:

{'uuid': 'f00elae0-5674-4218-b1de-8995c9£9¢c546"', 'created at':
'2019-01-07T09:19:40.210121+00:00", 'updated at': None,

'operation status': 'OperationScheduled', 'operation logs': '',
'operation name':
{'reconfigure cimc password': '****' 'reconfigure': True}}

25

HCLTech

APl Resources

e Setupdata

e Install resource

e Nodes

e Replace a controller

e Offline Validation

e Update Secrets

e OpenStack Configs

e Version

e Health of the Management Node

e Hardware Information

e Release Mapping Information
Setupdata

REST wrapper for setupdata. Provides methods for listing, creating, modifying, and deleting
setupdata.

Retrieving the setupdata

Resource URI

Verb URI

GET @ /vl1l/setupdata

Example
JSON Request:

GET /vl/setupdata Accept: application/json

Curl Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Rest APl admin password> -H 'Accept:
application/json' -H 'User-Agent: python-ciscovimclient' --cacert “<mercury-ca.crt path>"
https://<br_api>:8445/setupdata

JSON Response

26

HCLTech

200 OK

Content-Type: application/json
{"setupdatas": [{

"status": "Active",
"name" : "GG34",

"yuid": "123"

"meta": {
"user":"root"
}I
"jsondata": {

}

1}

Creating Setupdata

Resource URI

Verb URI
POST /v1l/setu
pdata
Example

JSON Request
POST /vl/setupdata Accept: application/json
{ "name":"GG34",
"uuid": "123"
"meta": {
"user":"root"

br
"jsondata": {

Curl Command:

curl -g -i -X POST -H 'Content-Type: application/json' -u admin:<Rest APl admin passwd> -H 'Accept: application/json' -H 'User-
Agent: python-ciscovimclient' --cacert "<mercury-ca.crt path>" -d '{"meta": {}, "name": "NEWSETUPDATA", "jsondata": { }}'
https://<br_api>:8445/setupdata

JSON Response

27

HCLTech

201 OK
Content-Type: application/json
{

"status": "Active",
"name" : "GG34",
"uyuid": "123"
"meta": {

"user" :"root"

br
"jsondata": {

400 Bad Request
Content-Type: application/json
{

"debuginfo": null "faultcode":"Client" "faultstring": "Error"

}

409 CONFLICT

Content-Type: application/json
{

"debuginfo": null "faultcode": "Client" "faultstring": "Error"

}

Retrieving a Single Setupdata

Example

Resource URI

Verb URI

GET /v1l/setupdata/ (id)

Property:
id—The ID of the setupdata that you want to retrieve.

JSON Request
GET /vl1/setupdata/123
Accept: application/json

Curl Command:curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Rest API
admin password> -H 'Accept: application/json' -H 'User-Agent: python-ciscovimclient' --cacert
'<mercury-ca.crt path>' https://<br_api>:8445/setupdata/<setup data uuid>

28

HCLTech

JSON Response

200 OK
Content-Type: application/json
{

"status": "Active",
"name" : "GG34",
"yuid": "123"
"meta": {
"user":"root"

S r
"jsondata": {

.......

404 NOT FOUND
Content-Type: application/json

{
"debuginfo": null "faultcode": "Client"
"faultstring": "Setupdata could not be found."

1

Updating a Setupdata

Resource URI
Verb | URI
PUT /vl/setupdata/ (id)

Property:
id—The ID of the setupdata that you want to update. Example

Convert setupdata response generated from GET request to JSON format then update field required to edit

JSON Request

PUT /vl/setupdata/123 Accept: application/json

S curl -i -X PUT\
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-u admin:<Rest APl admin password> \
--cacert "C:\certificates\mercury-ca.crt" \
-d'{
"name": "NEWSETUPDATA",
"meta": {},
"uuid": "<setupdata uuid>",
"jsondata": {

}
29

HCLTech

<Updated setup data in JSON format>

'\

https://<br_api>:8445/setupdata/<setupdata uuid>
JSON Response

200 OK
Content-Type: application/json
{

"status": "Active",
"name" : "GG34",
"yuid": "123"
"meta": {
"user":"root"

bo
"jsondata": {

.......

404 NOT FOUND
Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"
"faultstring": "Setupdata could not be found."
}

Deleting a Setupdata

Resource URI

Verb URI

DELETE /v1l/setupdata/ (id)

Property:
id—The ID of the setupdata that you want to delete. Example

Get active setupdata UUID from GET request
JSON Request

DELETE /vl/setupdata/123 Accept: application/json

30

HCLTech

curl -g -i -X DELETE -H 'Content-Type: application/json' -u admin:<Rest APl admin password> -H 'Accept:
application/json' -H 'User-Agent: python-ciscovimclient' --cacert "<mercury-ca.crt path>"
https://<br_api>:8445/setupdata/<setupdata uuid>

JSON Response

204 NO CONTENT Returned on success
404 NOT FOUND
Content-Type: application/json

{
"debuginfo": null "faultcode": "Client"
"faultstring": "Setupdata could not be found."

}

400 BAD REQUEST

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"

"faultstring": "Setupdata cannot be deleted when it is being used
by an installation"

}

Install Resource

REST wrapper for install.
Provides methods for starting, stopping, and viewing the status of the installation process

Return a List of Installation

Resource URI

Verb URI
GET /v1l/install
Example

JSON Request

GET /vl/install
Accept: application/json

JSON Response

31

HCLTech

200 OK

Content-Type: application/json
{"installs": [{

"ceph": "Skipped",

"yuid": "123",

"setupdata": "345",

"vmtpresult": "{

"status": "PASS",

"EXT NET": []

}"I

"baremetal": "Success", "orchestration": "Success",
"validationstatus": "{ "status": "PASS", "Software Validation": [],
"Hardware Validation": []

Py

"currentstatus": "Completed", "validation": "Success", "hostsetup":
"Success", "vmtp": "Skipped"

]
}

Create an Installation

Resource URI
Verb URI
POST /v1/install

Example
JSON Request

GET /vl/install Accept: application/js

{

"setupdata": "123", "stages": ["validation", "bootstrap",
"runtimevalidation", "baremetal", "orchestration", "hostsetup"

" ceph " , "vmtp "

]

}

JSON Response

32

HCLTech

201 CREATED

Content-Type: application/json
{

"ceph": "Skipped",

"uuid": "123",

"setupdata": "345",
"vmtpresult": "{

"status": "PASS",

"EXT NET": []

}" 14

"baremetal": "Success", "orche

"validationstatus": "{ "status":
"Hardware Validation": []

Py

"currentstatus": "Completed",

"Success", "vmtp": "Skipped"

}
409 CONFLICT

Content-Type: application/json

{
"debuginfo": null "faultcode":

stration": "Success",
"PASS", "Software Validation": [],

"validation": "Success", "hostsetup":

"Client"

"faultstring": "Install already exists"

}

Retrieve the Installation

Resource URI

Verb | URI

GET /vl1/inst
all/{id}

Property:

id—The ID of the installation that you want to retrieve. Example

JSON Request

GET /v1/install/345
Accept: application/js

JSON Response

33

HCLTech

200 OK

Content-Type: application/json

{

"ceph": "Skipped",

"uuid": "123",

"setupdata": "345",

"vmtpresult": "{

"status": "PASS",

"EXT NET": []

}"I

"baremetal": "Success", "orchestration": "Success",
"validationstatus": "{ "status": "PASS", "Software Validation": [],
"Hardware Validation": []

"y

"currentstatus": "Completed", "validation": "Success", "hostsetup":
"Success", "vmtp": "Skipped"

}
404 NOT FOUND

Content-Type: application/json

{
"debuginfo": null "faultcode": "Client"
"faultstring": "Install doesn't exists"

}

Stop the Installation

Resource URI
Verb URI
DELETE /v1/install/{id}

Property:
id—The ID of the installation that you want to stop.
Example

JSON Request

34

HCLTech

DELETE /v1/install/345
Accept: application/js

JSON Response

204 NO CONTENT
Content-Type: application/json

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client" "faultstring":
"Install doesn't exists"

}

Nodes

Getting a List of Nodes

Resource URI

Verb URI

GET /v1/nodes
Example

Curl Command:

curl -i -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' -H 'CVIM-API-
Version: 4.0.0' -H 'User-Agent: python-ciscovimclient' -u admin:<Rest APl Password> --cacert
"C:\<mercury-ca.crt path>" https://<Pod |P>:8445/nodes

JSON Request

Get /vl/nodes
Accept: application/js

JSON Response

35

HCLTech

200 OK
Content-Type: application/json
{

"nodes": [[

"status": "Active",

"uuid": "456",

"setupdata": "123",

"node data": "{

"rack info": { "rack id": "RackA"

}I

"cimc info": {

"cimc ip": "10.10.10.10"

}I

"management ip": "7.7.7.10"

}"I

"updated at": null, "mtype": "compute",
"install": "345", "install logs": "logurl",
"created at":"2016-0710T06:17:03.761152",
"name": " compute-1"

}
]
}

Add New Nodes

The nodes are in compute or block_storage type. Before adding the nodes to the system, the
name of the nodes and other necessary information like cimc_ip and rackid must be updated in the
setupdata object. If the setupdata object is not updated, the post call does not allow you to add the
node. Resource URI

Verb | URI

POST /vl1l/nodes

Example

CURL Command:

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent:
python-ciscovimclient" -u admin:<Password> --cacert </mercury-ca.crt path> -d @payload.json
https://<POD IP>:8445/setupdata/<UUID>

JSON Request

36

HCLTech

POST /vl1/nodes
Accept: application/js
{

"name" : "compute-5"

}

JSON Response

201 CREATED
Content-Type: application/json
{

"status": "ToAdd",

"uuid": "456"’

"setupdata": "123",

"node data": "{

"rack info": { "rack id": "RackA"

y

"cimc info": { "cimc ip": "10.10.10.10"
s

"management ip": "7.7.7.10"

"y

"updated at": null, "mtype": "compute",
"install": "345", "install logs": "logurl",
"created at":"2016-0710T06:17:03.761152",
"name": " compute-1"

}

Retrieve Information about a Particular Node

Resource URI

Verb URI
GET /v1l/nodes{id}
Property:

id—The ID of the node that you want to retrieve.
Example
CURL Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Rest Api Password> -H
'Accept: application/json' -H 'User-Agent: python-ciscovimclient' --cacert "<mercury-ca.crt path"
https://<POD IP>:8445/v1/nodes

37

HCLTech

JSON Request

POST /vl/nodes
Accept: application/js

JSON Response
200 OK
Content-Type: application/json
{

"status": "Active",

"uuid": "456",

"setupdata": "123",

"node data": "{

"rack info": { "rack id": "RackA"

s

"cimc _info": { "cimc ip": "10.10.10.10"
s

"management ip": "7.7.7.10"

Py

"updated at": null, "mtype": "compute",
"install": "345", "install logs": "logurl",
"created at":"2016-0710T06:17:03.761152",
"name": " compute-1"

}
404 NOT FOUND

Content-Type: application/json

{
"debuginfo": null "faultcode": "Client"
"faultstring": "Node doesn't exists"

}

Remove a Node

The node to be deleted must be removed from the setupdata object. Once the setupdata
object is updated, you can safely delete the node. The node object cannot be deleted until it calls the
remote node backend and succeeds.

Resource URI
Verb URI
DELETE @ /vl/nodes{id}

Property:
id—The ID of the node that you want to remove.

Example

38

HCLTech

CURL Command:

curl -i -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' -H 'CVIM-API-Version:
4.0.0' -H 'User-Agent: python-ciscovimclient' -u admin:<Rest API Password> --cacert "C:\<mercury-
ca.crt path>" https://<POD IP>:8445

JSON Request

DELETE /v1/nodes/456
Accept: application/js

JSON Response

204 ACCEPTED

Content-Type: application/json

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"
"faultstring": "Node doesn't exists"

}

To clear the database and delete the entries in the nodes, the delete API is called with special
parameters that are passed along with the delete request. The JSON parameters are in the following
format.

JSON Request

DELETE /v1/nodes/456 Accept: application/js
{
"clear db entry":"True"\

}

JSON Response

39

HCLTech

204 ACCEPTED
Content-Type: application/json

404 NOT FOUND
Content-Type: application/json

{
"debuginfo": null "faultcode": "Client"
"faultstring": "Node doesn't exists"

}

Replace a Controller
Resource URI

Verb URI

PUT /v1l/nodes{id}

Property:
id—The ID of the controller that you want to replace.

Example

! Thisis done only if the node is deleted from the REST API database. The failure reason of the node must
be rectified manually apart from the API. True is a string and not a boolean in the preceding line.

CURL Command:

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent: python-
ciscovimclient" -u admin: --cacert "C:<mercury-ca.crt pth>" -d '{"name": "<controller node name to be replaced>",
"status": "ToReplace", "force_op": false, "skip_vmtp": false}' https://<br_api ip>:8445/nodes/UUID

JSON Request

PUT /vl/nodes/456 Accept: application/js

40

HCLTech

JSON Response

200 OK

Content-Type: application/json

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"
"faultstring": "Node doesn't exists"

}

Offline Validation

REST wrapper does the offline validation of setupdata. Rest Wrapper only does the Software
Validation of the input setupdata.

Create an Offline Validation Operation

Resource URI
Verb URI
POST /vl/offlinevalidation

Example

CURL Command:

curl -g -i -X POST -H "Content-Type: application/json" -u admin:<Password> -H "Accept:
application/json" --cacert 'C:\<mercury-ca.crt payh>' -d "{\"jsondata\": $(cat setup_data.json)}"
https://<Pod IP>:8445/v1/offlinevalidation

JSON Request

POST /vl/offlinevalidation Accept: application/json
{
"jsondata": "."

}

JSON Response

41

ClTech

201 CREATED

Content-Type: application/Jjson

{

"status": "NotValidated",

"uuid": "bb42edba-c8b7-4a5c-98b3-1£384aae2b69", "created at":
"2016-02-03T02:05:28.384274", "updated at": "2016-02-
03T02:05:51.880785",

"jsondata": "{}", "validationstatus": { "status": "PASS",
"Software Validation": [], "Hardware Validation": []

}

}

Retrieve the Results of Offline Validation
Resource URI

Verb URI
GET /vl/offlinevalidation
Property:

id—The ID of the node you want to retrieve.
Example
Curl Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Password> -H 'Accept:
application/json' -H 'User-Agent: python-ciscovimclient' --cacert 'C:<mercury-ca.crt path>"'
https://<Pod IP>:8445/v1/offlinevalidation/<UUID>
JSON Request

GET /vl/offlinevalidation/789 Accept: application/json

42

ClLTech

JSON Response
200 OK
Content-Type: application/json
{

"status": " ValidationSuccess",
"uuid": "bb42edba-c8b7-4a5c-98b3-1£384aae2b69", "created at":

"2016-02-03T02:05:28.384274", "updated at": "2016-02-

03T02:05:51.880785",
"jsondata": "{}", "validationstatus": { "status": "PASS",

"Software Validation": [], "Hardware Validation": []

}
}

Update

Start an Update Process

Resource URI
Verb URI

POST /v1/update

Parameters:
« fileupload - "tar file to upload"

. filename - "Filename being uploaded"

Example.
JSON Request
curl -sS -X POST --form "fileupload=@Test/installer.good.tgz" --
form "filename=installer.good.tgz" https://10.10.10.8445/vl/update

This curl request is done as a form request.

43

HCLTech

JSON Response

200 OK
Content-Type: application/json
{

"update logs": "logurl", "update status": "UpdateSuccess",
"update filename": "installer-4579.tgz", "created at": "2016-07-
10T18:33:52.698656", "updated at": "2016-07-10T18:54:56.885083"

is

Roll Back an

}
409 CONFLICT

Content-Type: application/json

{
"debuginfo": null "faultcode": "Client" "faultstring": "Uploaded

not in tar format"

}

Update

Resource URI

Verb URI
PUT /v1/update
Example

JSON Request

PUT /vl/update
Accept: application/json

{

"action":"rollback"

}

44

file

ClLTech

JSON Response

200 OK
Content-Type: application/json
{

"update logs": "logurl", "update status": "ToRollback",
"update filename": "installer-4579.tgz", "created at": "2016-07-
10T18:33:52.698656", "updated at": "2016-07-10T18:54:56.885083"

}

Commit an Update

Resource URI

Verb URI
PUT /v1/update
Example

JSON Request

PUT /vl1/update
Accept: application/json
{

"action":"commit"

}

JSON Response

200 OK

Content-Type: application/json

{

"update logs": "logurl", "update status": "ToCommit",
"update filename": "installer-4579.tgz", "created at": "2016-07-
10T18:33:52.698656", "updated at": "2016-07-10T18:54:56.885083"

}

Retrieve the Details of an Update

Resource URI

Verb URI
GET /v1/update
Example

45

HCLTech

JSON Request

GET /vl1/update
Accept: application/json

JSON Response

200 OK
Content-Type: application/json

{

"update logs": "logurl", "update status": "UpdateSuccess",
"update filename": "installer-4579.tgz",

"created at": "2016-07-10T18:33:52.698656", "updated at": "2016-07-
10T18:54:56.885083"

}

Secrets
Retrieve the list of secrets that are associated with the OpenStack Setup.

You can retrieve the set of secret passwords that are associated with the OpenStack setup using the
preceding api. This gives the list of secrets for each service in OpenStack.

Resource URI

Verb URI
GET /vl1l/secrets
Example

Curl Command

curl -i -X GET \-H "Accept: application/json" \-u admin:<Password> \--cacert /<mercury-ca.crt path>
\"https://<Pod |p:8445>/v1/secrets
JSON Request

GET /v1/secrets

Accept: application/json

46

HCLTech

JSON Response

200 OK
Content-Type: application/json
{

"HEAT KEYSTONE PASSWORD": "xxxx", "CINDER KEYSTONE PASSWORD":
"xxxxx",
"RABBITMQ PASSWORD": "xxxxx"
}
OpenStack Configs

Retrieve the list of OpenStack configs associated with the OpenStack Setup

You can retrieve the set of OpenStack configs associated with the OpenStack setup using the
preceding api. This gives the current settings of different configurations such as verbose logging and
debug logging for different OpenStack services.

URI

/v1l/openstack config

Curl Command

curl -i -X GET \-H "Content-Type: application/json" \-H "Accept: application/json" \-u
admin:<Password>\cacert/<mercuryca.crtpath>\https://<PodIP>:8445/v1/openstack_config

JSON Request

GET /v1/openstack_config
Accept: application/json
JSON Response

200 OK
Content-Type: application/json

{
"CINDER DEBUG LOGGING": false, "KEYSTONE DEBUG LOGGING": false,

"NOVA VERBOSE LOGGING": true
}

47

HCLTech

Version
Retrieve the version of the Virtualized Infrastructure Manager.

Resource URI

Verb URI
GET /vl/version
Example

Curl Command

curl -i -X GET -H 'Accept: application/json' -u admin:<Rest APi admin passwd> --cacert <mercury cert path>
https://<br_api ip>:8445/v1/version
JSON Request
GET /vl/version Accept: application/json
JSON Response

200 OK
Content-Type: application/json
{"version": "1.9.1"}

Health of the Management Node
Retrieve the health of the Management node

This APl is used to retrieve the health of the management node. It checks various parameters such
as partitions, space and so on. Resource URI

Verb URI
GET /v1l/health

Example

Curl command:

curl -i -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' -H 'CVIM-API-Version: 4.0.0' -H 'User-
Agent: python-ciscovimclient' -u admin:<rest api admin passwd> --cacert "<mercury cert path>" https://<br_api
ip>:8445/v1/health

JSON Request
GET /vl1/health
Accept: application/json
JSON Response
200 OK
Content-Type: application/json
{
"status": "PASS", "pod status": { "color": "BLUE", "version":
"<VERSION NO.>"
by
"insight version": "<VERSION NO.>"
}

48

HCLTech

Color signifies the health of the pod for Insight:

e Grey signifies that no installation is kicked off on the pod.

® Green signifies that everything is in Good state and cloud installation is active.

e Blue signifies that some operation is running on the pod.

* Red signifies that the pod is in critical state, and you might need TAC support to recover the
pod.

e Amber indicates a warning if a pod management (Add/Remove/Replace) operation failed.
Hardware Information

REST wrapper to do hardware information of setupdata. This returns the hardware information of all
hardware available in the setupdata.

Create a HWinfo Operation

Resource URI

Verb URI
GET /v1l/hwinfo
Example

Curl command:
curl -k -u admin:<rest api admin passwd> -H "Accept: application/json" -H "Content-Type: application/json" -X GET
"https://<br_api>:8445/v1/hwinfo"
JSON Request
POST /vl1/hwinfo Accept: application/json
{
"setupdata":"c94d7973-2fcc-4cdl-832d-453d66e6b3bf"
}
JSON Response
201 CREATED
Content-Type: application/json
{
"status": "hwinfoscheduled",
"uuid": "928216dd-9828-407b-9739-8a7162bd0676",
"setupdata": "c94d7973-2fcc-4cdl-832d-453d66e6b3bf", "created at": "2017-03-
19T13:41:25.488524", "updated at": null, "hwinforesult": ""
}

Retrieve the Results of Hwinfo Operation

Resource URI

Verb URI
GET /v1/hwinfo/{id}
Property:

id—The ID of the node you want to query.
49

HCLTech

Example

Curl command:

curl -k -u admin:<rest api admin passwd> -H "Accept: application/json" -H "Content-Type: application/json" -X GET
https://<br api>:8445/v1/hwinfo

JSON Request
GET /v1/hwinfo/789 Accept: application/json

JSON Response
200 OK
Content-Type: application/json

{

"status": "hwinfosuccess",

"yuid": "928216dd-9828-407b-9739-8a7162bd0676",

"setupdata": "c94d7973-2fcc-4cdl-832d-453d66ebb3bf", "created at": "2017-03-
19T13:41:25.488524", "updated at": "2017-03-19T13:42:05.087491",
"hwinforesult": "{\"172.29.172.73\": {\"firmware\":

.................

Release Mapping Information

This api is used to see the list of Features included and list of options which can be reconfigured in

the Openstack Setup.
Retrieve the release mapping information

Resource URI

Verb URI

GET /vl/releasemapping

Curl Command

curl -1 -X GET -H 'Accept: application/json' -u admin:<rest api admin paswd> --cacert <mercury cert path>
https://<br_api ip>:8445/v1/releasemapping

JSON Request
GET /vl/releasemapping Accept: application/json

JSON Response

200 OK
Content-Type: application/json [

{
"SWIFTSTACK": {

"feature_status": true,

]I

"desc": "swift stack feature"

50

HCLTech

POST Install Operations

The following are the post install operations that can be performed, after the successful installation of
OpenStack. It uses a common api.

Example:

. reconfigure

. reconfigure -regenerate passwords

. reconfigure -setpasswords,setopenstack_configs
.reconfigure -alertmanager_config, -alerting_rules_config
. check-fernet-keys

. resync-fernet-keys

. rotate-fernet-keys

NoOooupd,WwNBE

Create a Post install Operation

Resource URI

Verb URI
POST /v1l/misc
Examples:

JSON Request
POST /vl1/misc
Accept: application/json
{"action": {"reconfigure": true}}

Curl command
curl -i -X POST --insecure -H 'Content-Type: application/json' -u admin:<Rest api admin passwd> -H 'Accept:
application/json' -d '{"action": {"reconfigure": true}}' https://<br_api ip>:8445/v1/misc

JSON Response

201 CREATED

Content-Type: application/json

{

"uuid": "7e30a671l-bacf-4e3b-9%9a8f-5al1fd8a46733", "created at": "2017-03-
19T14:03:39.723914", "updated at": null,

"operation status": "OperationScheduled", "operation logs": "",
"operation name": "{"reconfigure": true}"

}

JSON Request
POST /vl/misc
Accept: application/json
{"action": {"reconfigure": true, "alertmanager config": <json config>}}

JSON Response
201 CREATED
Content-Type: application/json
{

51

ClTech

"uuid": "68b67265-8£09-480e-8608-b8aff77e0ec’", "created at": "2019-01-
09T16:42:11.484604+00:00",
"updated at": null,

mn

"operation status": "OperationScheduled", "operation logs":
"operation name": "{"alertmanager config": <json config>, "reconfigure": true}"

}
Retrieve a Status of the Post Install Operation

Resource URI
Verb URI
GET | /v1/misc

Example

JSON Request
GET /vl1/misc
Accept: application/json

Curl command:

curl -i -X GET -H "Accept: application/json" -u admin:<rest api admin passwd> --cacert "<mercury
cert path>" https://<br_api ip>:8445/v1/misc

JSON Response
201 CREATED
Content-Type: application/json

{
"uuid": "7e30a671l-bacf-4e3b-9%9a8f-5al1fd8a46733", "created at": "2017-03-

19T14:03:39.723914", "updated at": "2017-03-19T14:03:42.181180",
"operation status": "OperationRunning", "operation logs":
"XXXXXXXKXXXXXXXXX", "operation name": "{\"reconfigure\": true}"

}

In VIM Rest APIs exist to support NFVBench, query hardware information and to get a list of optional
and mandatory features that the pod supports.

Following are the API details:

NFVBench Network Performance Testing

Create NFVBench Run

Starts the network performance test with provided configuration.

Verb URI
Post | vl/nfvbench/ create ndr_pdr_test

Example

JSON Request

52

HCLTech

Curl command:

POST Request URL
/v1l/nfvbench/create fixed rate test JSON Request:
{"nfvbench request":

{

"duration sec": 20, "traffic profile": [
{

"name": "custom", "l2frame size": [
"64",

"IMIX", "1518"

]

}

1,

"traffic": { "bidirectional": true, "profile": "custom"
b

"flow count": 1000

}

}

JSON Response
201 CREATED
Content-Type: application/json
{

"status": "not run", "nfvbench request":
"{
"duration sec": 20, "traffic profile": [
{
"name": "custom", "l2frame size": ["64",

" IMIX"’ "1518"

]

}

1,

"traffic": { "bidirectional": true, "profile": "custom"

b

"flow count": 1000

I

"created at": "2017-08-16T06:14:54.219106",

"updated at": null, "nfvbench result": "", "test name": "Fixed Rate Test"

}
REST API To Create Fixed Rate Test

Verb URI
Post vl/nfvbench/ create ndr pdr test
Example

53

HCLTech

JSON Request

POST Request URL
/vl/nfvbench/create fixed rate test JSON Request:
{"nfvbench request":

{

"duration sec": 20, "traffic profile": [
{

"name": "custom", "l2frame size": |
"64",

"IMIX"™, "1518"

1

}

1,

"traffic": { "bidirectional": true, "profile": "custom"

b
"flow count": 1000

}
}

Curl command:
curl -k -u admin:<rest api admin passwd> \ -H "Accept: application/json" \
-H "Content-Type: application/json" \
-X POST "https://<br_api>:8445/v1/nfvbench/create_fixed rate test"\
-d {
"nfvbench_request": {
"duration_sec": 20,
"traffic_profile": [
{
"name"; "custom”,
"I2frame_size": [
"64",
"IMIX",
"1518"

54

ClTech

"traffic": {

"bidirectional": true,

"profile": "custom"

2

"flow_count": 1000

}
}l
JSON Response
201 CREATED

Content-Type: application/json
{

"status": "not run", "nfvbench request":
"
"duration sec": 20, "traffic profile": [
{
"name": "custom", "l2frame size": ["64",

"IMIX"’ "1518"

]

}

Iy

"traffic": { "bidirectional": true, "profile": "custom"

b

"flow count": 1000

I

"created at": "2017-08-16T06:14:54.219106",

"updated at": null, "nfvbench result": "", "test name": "Fixed Rate Test"

}

Status Polling

Polling of NFVbench run status which is one of nfvbench_running, nfvbench_failed,
nfvbench_completed.

Resource URI
Verb URI
GET vl/nfvbench/<test name>

REST API To Get Fixed Rate Test Result
GET Request URL
/v1/upgrade/get fixed rate test result

55

HCLTech

JSON Request:

Check If NFVbench Test is running
200 OK

Content-Type: application/json

{

"status": "nfvbench running",

"nfvbench request": '{"traffic": {"bidirectional": true, "profile":
"custom"}, "rate": "1000000pps",

"traffic profile": [{"12frame size": ["1518"], "name": "custom"}],
"duration sec": 60, "flow count": 1000}', "nfvbench result": ""

"created at": "2017-05-30T21:40:40.394274", "updated at": "2017-05-

30T21:40:41.367279",
}

JSON Response

Check If NFVbench test is completed:
200 OK

Content-Type: application/json
{

"status": "nfvbench completed",

"nfvbench request": '{"traffic": {"bidirectional": true, "profile":
"custom"}, "rate": "1000000pps", "traffic profile": [{"l2frame size": ["1518"],
"name": "custom"}], "duration sec": 60, "flow count": 1000}',

"nfvbench result": '{"status": "PROCESSED", "message": {"date": "2017-08-15
23:15:04", "nfvbench version": "0.9.3.dev2", }

"created at": "2017-05-30T21:40:40.394274", "updated at": "2017-05-

30T22:29:56.970779",
}

REST API to create NDR/PDR Test POST Request URL

JSON Request
/vl/nfvbench/create ndr pdr test Accept: application/json
{"nfvbench request":
{
"duration sec": 20, "traffic profile": [
{
"name": "custom", "l2frame size": ["64",
"IMIX", "1518"
]
}
1y

"traffic": { "bidirectional": true, "profile": "custom"

56

ClTech

}r
"flow count": 1000

}
}

JSON Response
201 CREATED

Content-Type: application/Jjson
{

"status": "not run", "nfvbench request":
!

"éuration_sec": 20, "traffic profile": [
iname": "custom", "l2frame size": [
"64",

" IMIX", "1518"

]

}

1,

"traffic": { "bidirectional": true, "profile": "custom"
s

"flow count": 1000

}l

"created at": "2017-08-16T07:18:41.652891",

"updated at": null, "nfvbench result": "", "test name": "NDR PDR Test"

}
REST API To Get NDR/PDR Test Results

GET Request URL
/v1/ nfvbench/get ndr pdr test result
JSON Response:
If NFVbench NDR/PDR test is running:
200 OK
Content-Type: application/json
{

"status": "nfvbench running", "nfvbench request": '{"duration sec": 20,
"traffic": {"bidirectional": true, "profile": "custom"},

"traffic profile": [{"l2frame size": ["64", "IMIX", "1518"],
"custom"}], "flow count": 1000}', "nfvbench result": ""

"created at": "2017-08-16T07:18:41.652891", "updated at": "2017-09-

30T22:29:56.970779",
}
If NFVbench NDR/PDR test is completed:
200 OK
Content-Type: application/json
{

"status": "nfvbench completed", "nfvbench request": '{"duration sec":
"traffic": {"bidirectional": true, "profile": "custom"},
"traffic profile": [{"l2frame size": ["64", "IMIX", "1518"],

"custom"}], "flow count": 1000}',

57

20,

ClTech

"nfvbench result": '{"status": "PROCESSED",...}' "created at": "2017-08-
16T07:18:41.652891", "updated at": "2017-09-30T22:29:56.970779",

}

Curl command:

curl -1 -X GET -H "Content-Type: application/json" -H "Accept: application/json" -u admin:<rest api admin
passwd> --cacert <mercury cert path> "https://<br_api ip>:8445/v1/nfvbench/get ndr pdr test result"

REST API to Get Node Hardware Information
Rest API helps you to get the hardware information of all the nodes in the:
e POD through CIMC/UCSM.
e Total Memory
e Firmware Info (Model, Serial Number)
e CIMCIP

GET Request URL
/v1l/hwinfo Output Response

{

"hwinforesult": "{"control-server-2": {"memory": {"total memory": "131072"},
"firmware": {"serial number": "FCH1905V16Q", "fw model": "UCSC-C220- M4S"},
"cimc ip": "172.31.230.100", "storage": {"num storage": 4},
"cisco vic adapters": {"product name": "UCS VIC 1225"},

"cpu": {"number of cores": "24"}, "power supply": {"power state": "on"}}

}
REST API to Get Mandatory Features Mapping
Curl Command

curl -1 -X GET \ -H "Accept: application/json" \-u admin:Password \--cacert /<mercury-ca.crt
path>\https://<POD IP>:8445/v1/releasemapping/mandatory features mapping

POST Request URL

/vl/releasemapping/mandatory features mapping JSON Response:

{
"mandatory": { "networkType": { "C": ({

"feature status": true,

"values": [{"name": "VXLAN/Linux Bridge", "value": "VXLAN/Linux Bridge"},],
"insight label": "Tenant Network", "desc": "Tenant Network"

b, "B": |

"feature status": true,

"values": [{"name": "VXLAN/Linux Bridge", "value": "VXLAN/Linux Bridge"},],
"insight label": "Tenant Network", "desc": "Tenant Network"

}
by

58

HCLTech

"cephMode": {

"all": { "feature status": true,
"values": [{"name": "Central", "value": "Central"},], "insight label": "Ceph
Mode", "desc": "Ceph Mode"

}
by
"podType": {

"C": |

"feature status": true,

"values": [{"name": "Fullon", "value": "fullon"},], "insight label": "POD
Type", "desc": "POD Type"

Yo "B

"feature status": true,

"values": [{"name": "Fullon", "value": "fullon"},], "insight label": "POD
Type", "desc": "POD Type"

}

}I

"installMode": { "all": { "feature status": true,

"values": [{"name": "Connected", "value": "connected"},], "insight label":
"Install Mode", "desc": "Install Mode"

}

}

by

"platformType": [{"name": "B-series", "value": "B"}, {"name": "C-series",
"value": "C"}], "postinstalllinks": {

"view cloudpulse": {"alwayson": true, "feature status": true,
"platformtype": "all", "insight label": "Run VMTP", "desc": "Cloudpluse"},
"password reconfigure": {"alwayson": true, "feature status": true,
"platformtype": "all", "insight label": "Reconfigure Passwords", "desc":

"Reconfigure Passwords"}

}

}

REST API to Get Optional Features Mapping

Curl Command:
curl -i -X GET \-H "Accept: application/json" \ -u admin:Password \ --cacert /<mercury-ca.crt path>\
https://<POD IP>:8445/v1/releasemapping/optional_features_mapping

POST Request URL
/vl/releasemapping/optional features mapping JSON Response: [
{
"SWIFTSTACK": {

"feature status": true, "insight label": "Swiftstack",
"repeated redeployment": true, "reconfigurable": ["cluster api endpoint",
"reseller prefix", "admin password", "protocol"],

"desc": "swift stack feature"

}

59

ClTech

by
{

"heat": {
"feature status": true, "insight label": "Heat", "repeated redeployment":
false, "reconfigurable": ["all"], "desc": "Openstack HEAT service"

}
I

other features

]
Cloud Sanity Information

REST wrapper to run cloud-sanity test suites. The cloud-sanity extension to the VIM REST API
enables support for managing cloud-sanity test actions.

Create a cloud-sanity Test

Verb URI
Post @ /vl/cloud-sanity/create

Example
Curl Command:

curl -i -X POST /-H "Accept: application/json" \-H "Content-Type: application/json" \-u
admin:<Password>\cacert/<mercuryca.crt path>\ https://<Pod |IP>:8445/v1/cloudsanity/create \\-d
{"cloudsanity_request": {"command": "create","action": "test","test_name": "cephmon","uuid": "<UU
ID of the node>"}}
JSON Request
POST /vl/cloudsanity/create Accept: application/json
'{"cloudsanity request": {"command": "create", "action": "test", "test name":
"cephmon" ’ "uuid": """ } } !
test name can be all,management,control, compute, cephmon,cephosd
JSON Response
201 Created

{

'cloudsanity request': "{u'action': u'test', u'command': u'create', u'uuid':
'5dff1662-3d33-4901-808d-479927c01ldde"', u'test name': u'cephmon'}",
'cloudsanity result': '',

'created at': '2018-01-26T20:32:20.436445",

'status': 'not run', 'test name': 'cephmon', 'updated at': "'

}
Retrieve a Status of the Post Install Operation

Resource URI
Verb URI
GET /vl/misc

Example:
CURL Command:
60

HCLTech

curl -i -X GET \-H "Accept: application/json" \-u admin:<Password> \--cacert /<mercury-ca.crt
path> \https://<Pod IP>:8445/v1/misc
JSON Request

GET /vl/misc

Accept: application/json
JSON Response

201 CREATED

Content-Type: application/Jjson

{

"uuid": "7e30a67l-bacf-4e3b-9a8f-5al1fd8a46733", "created at": "2017-03-
19T14:03:39.723914", "updated at": "2017-03-19T14:03:42.181180",

"operation status": "OperationRunning", "operation logs":
"XXXXXKXXKXXKXXXXXX", "operation name": "{\"reconfigure\": true}"

}

In VIM Rest APIs exist to support NFVBench, query hardware information and to get a list of optional
and mandatory features that the pod supports. Following are the API details:
JSON Response

200 OK

Content-Type: application/json [

{

"SWIFTSTACK": ({

"feature status": true,

1,

"desc": "swift stack feature"

List Specific cloud-sanity Test Results

Verb URI

GET /v1l/cloud-sanity/list/?test name={all, management,
control, compute, cephmon, cephosd}

CURL Command:

curl-i -X GET \-H "Accept: application/json" \-u admin:<Password> \--cacert /<mercury-ca.crt
path>\https://<POD IP>:8445/v1/cloudsanity/list/?test_name=cephmon

JSON Request
GET /vl/cloudsanity/list/?test name=cephmon Accept: application/json

JSON Response
200 OK

{ '5dffl1662-3d33-4901-808d-479927c01ldde': { 'action': 'test', 'created at':
'2018-01-26 20:32:20",

'status': 'cloudsanity completed', 'test name': 'cephmon', 'uuid':
'5df£f1662-3d33-4901-808d-479927c01dde"'},

61

ClTech

'797d79%a-9%9ee0-4e11-9d9%e-47791dd05e07"': { 'action': 'test', 'created at':
'2018-01-25 12:05:11",
'status': 'cloudsanity completed', 'test name': 'cephmon', 'uuid':

'797d79%a-9ee0-4e11-9d9e-47791dd05e07"}}

Show cloud-sanity Test Results

Verb URI
GET /v1l/cloud-sanity/show/?uuid=<uuid>
CURL Command:

curl -X GET "https://<host>:<port>/v1/cloudsanity/show/?uuid=<uu id>" \-H "Accept: application/json"
\-H "Authorization: Bearer <access_token>"

JSON Request
GET /vl/cloudsanity/show/?uuid=d0111530-ee3b-45df-994c-a0917fd18ell

JSON Response
200 OK
{ 'action': 'test', 'cloudsanity request':
"{u'action': u'test', u'command': u'create',
u'uuid': 'd0111530-ee3b-45df-994c-a0917£d18ell', u'test name': u'control'}",

'cloudsanity result': '{"status": "PROCESSED",

"message": {"status": "Pass",

"message": "[PASSED] Cloud Sanity Control Checks Passed", "results":
{"control": {"ping all controller nodes": "PASSED",
"check rabbitmg is running": "PASSED", "check rabbitmg cluster status":
"PASSED", "check nova service list": "PASSED", "ping internal vip": "PASSED",

'created at': '2018-01-26 18:46:23",

'status': 'cloudsanity completed', 'test name': 'control', 'updated at':
'2018-01-26 18:47:58",

"disk maintenance raid health": "PASSED", "check mariadb cluster size":
"PASSED", "disk maintenance vd health": "PASSED"}}}}', 'uuid': 'd0111530-ee3b-

45df-994c-a20917fd18ell"}

Delete cloud-sanity Test Results

Verb URI
DELETE @ /vl/cloud-sanity/delete/?uuid=<uuid>

Curl Command:

curl -X DELETE "https://<host>:<port>/v1/cloudsanity/delete/?uuid=<uu id>"\-H "Accept:
application/json" \-u admin:<password>

JSON Request
GET /vl/cloudsanity/delete/?uuid=444aa4c8-d2ba-4379-b035-0£f47c686d1lc4

JSON Response
200 OK

{

"status": "deleted",

62

HCLTech

"message": "UUID 4443a4c8-d2ba-4379-b035-0f47c686dlcd deleted from
database", "uuid": "4443a4c8-d2ba-4379-b035-0f47c686d1lc4d", "error": "None"

}
Disk Maintenance information

REST wrapper to query information about RAID disks on Pod nodes. This returns the RAID disk |
nformation of all or a selection of RAID disks available in the Pod.

The disk management extension to the VIM REST API enables support for Disk Management
actions

63

HCLTech

Create a Check Disk Operation

Resource URI

Verb URI
POST /v1l/diskmgmt/check disks

Example
CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-
Type:application/json" \-X POST "https://<Pod IP>:8445/v1/diskmgmt/check_disks" \-d

{"diskmgmt_request": {"command": "create","action": "check-disks","role": "control","locator":

"False","json_display": "False","servers": "","uuid": ""}}'

JSON Request
POST /v1/diskmgmt/check disks Accept: application/json '{"diskmgmt request":

{"command": "create", "action": "check-disks",
"role": "control",
"locator": "False", "json display": "False", "servers": "", "uuid": ""}}'

JSON Response
201 Created
Content-Type: application/json
{

'action': 'check-disks',

'created at': '2018-03-08T02:03:18.170849+00:00",

'diskmgmt request': "{u'uuid': '072%dea-ccl9-440£f-8339-ab2le76be84b’,

u'json display': u'False', u'servers': u'',

u'locator': u'False', u'role': u'control', u'action': u'check-disks',
u'command': u'create'}", 'diskmgmt result': '', 'status': 'not run',
'updated at': 'None'

}
Create a Replace Disk Operation

Verb URI

POST /v1/diskmgmt/replace disks
Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-Type:
application/json" \-X POST "https://<Pod IP>:8445/v1/diskmgmt/replace_disks" \-d

{"diskmgmt_request": {"command": "create","action": "replace-disks","role": "control","locator":

"False","json_display": "False","servers": "","uuid": ""}}'

JSON Request

64

ClTech

POST /v1/diskmgmt/replace disks Accept: application/json

'{"diskmgmt request": {"command": "create",
"action": "replace-disks", "role": "control",
"locator": "False", "json display": "False", "servers": "", "uuid": ""}}'

JSON Response
201 Created
Content-Type: application/json

{

"status": "not run",

"diskmgmt request": "{u'uuid': 'cb353f41-6d25-4190-9386-330e971603c9’,
u'json display': u'False', u'servers': u'', u'locator': u'False', u'role':
u'control',

u'action': u'replace-disks', u'command': u'create'}", "created at": "2018-
03-09T12:43:41.289531+00:00",

"updated at": "", "diskmgmt result": "", "action": "replace-disks"}

List Check Disk Operation

Verb | URI
GET | /vl/diskmgmt/list/?action=

{check-disks, replace-disks
\&role={all,management,control, compute}

Example
CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-X GET "https://<POD
IP>:8445/v1/diskmgmt/list/?action=check-disks&role=all"

JSON Request
GET /v1/diskmgmt/list/?action=check-disks\&role=all

JSON Response

200 OK

Content-Type: application/json

{

'Obe7a55a-37fe-43a1-a975-cbf93ac78893"': {'action': 'check-disks',
'created at': '2018-03-05 14:45:45+00:00",

'role': 'compute',

'status': 'diskmgmt completed', 'uuid':

'Obe7a55a-37fe-43a1-a975-cbf93ac78893"'},

'861d4d73-ffee-40b£f-9348-13afc697ee3d': {'action': 'check-disks',
'created at': '2018-03-05 14:44:47+00:00",

'role': 'control',

'status': 'diskmgmt completed', 'uuid':

'861d4d73-ffee-40bf-9348-13afc697ee3d'},

'cdfdl8cl-6346-47a2-b0£f5-661305b5d160": {'action': 'check-disks',
'created at': '2018-03-05 14:43:50+00:00"',

'role': 'all"',

'status': 'diskmgmt completed', 'uuid':

65

HCLTech

'cdfd1l8cl-6346-47a2-b0£5-661305b5d160"}

}
}

Show a Completed diskmgmt Operation

Verb URI
GET v1/diskmgmt/show/?uuid=<uuid>
Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-X GET "https://<Pod
IP>:8445/v1/diskmgmt/show/?uuid=<UUID>"
JSON Request

GET /vl1/diskmgmt/show/?uuid=d24036c6-4557-4c12-8695-a92f6£9315ed
JSON Response

200 OK

Content-Type: application/json

{'action': 'check-disks',

'created at': '2018-03-07 21:46:41+00:00",

'diskmgmt request': "{u'uuid': 'd24036c6-4557-4cl2-8695-a92f6£9315ed’,
u'json display': False, u'servers': u'f24-michigan-micro-2', u'locator': False,
u'role': u'compute', u'action': u'check-disks', u'command': u'create'}",

'diskmgmt result': '{"status": "PROCESSED", "message":

["{\'Overall Status\': \'PASS\',

\'Result\': {\'fcfg disks results list\': [], \'spare disks results list\':
(1,

\'raid results list\': [{\'RAID levell\': \'RAID1\', \'Disk Med\': \'HDD\',

\'server\':

\N'7.7.7.6\", \'RAID type\': \'HW\', \'host\': \'f24-michigan-micro-2\"',
\'role\"':

\'block storage control compute\', \'VD health\': \'Optl\', \'Num VDs\': 1,
\'Num PDs\': 8, \'RAID health\': \'Opt\'}], \'bad disks results list\': [],

\'rbld disks results list\':

[1, \'add as spares disks results list\': []}}"]}', 'role': 'compute',

'status': 'diskmgmt completed', 'updated at': '2018-03-07 21:47:35+00:00"',
'uuid': 'd24036c6-4557-4c12-8695-a92f6£9315ed"

}
Delete a Completed diskmgmt Operation

Verb URI
DELETE @ vl/diskmgmt/delete/?uuid=<uuid>

Example
CURL Command:

66

HCLTech

curl -k -u admin:<Password> \-H "Accept: application/json" \-X DELETE "https://<Pod
IP>:8445/v1/diskmgmt/delete/?uuid=<UUID>"

JSON Request
DELETE /vl1/diskmgmt/delete/?uuid=d24036c6-4557-4c12-8695-a92f6f9315ed

JSON Response
200 OK
Content-Type: application/json
{

"status": "deleted",

"message": "UUID d24036c6-4557-4c12-8695-a92f6£9315ed deleted from
database", "uuid": "d24036c6-4557-4c12-8695-a92f6f9315ed", "error": "None"

}

OSD Maintenance Information

REST wrapper to query information about OSD on Pod storage nodes. This returns to the OSD
status information of all or a selection of OSDs available in the Pod.

Create an OSD Disk Operation

Verb URI
POST /v1/osdmgmt/check osds

Example
CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-Type:
application/json" \-X POST "https://<POD IP>:8445/v1/osdmgmt/check osds" \-d
{"osdmgmt_request": {"command": "create","action": "check-osds","locator": "False","json_display":
IIFalsell,llserversll: llll’llosdll: IINonell’lltagll: lla"ll,lluuidll: llll}}l
JSON Request

POST /v1/osdmgmt/osdmgmt/check osds '{"osdmgmt request": {"command":

"create", "action": "check-osds",
"locator": "False", "json display": "False", "servers": "", "osd": "None",
"uuid": ""} }]

JSON Response
201 Created
Content-Type: application/json
{

'action': 'check-osds',

'created at': '2018-03-08T21:26:15.329195+00:00",

'osdmgmt request': "{u'uuid': '9c6dee52-bed5-4b69-91a2-d589411dd223",
u'json display': u'False', u'servers': u'', u'locator': u'False', u'command':
u'create', u'action':

u'check-osds', u'osd': u'None'}", 'osdmgmt result': '', 'status': 'not run',
'updated at': 'None'

}

67

HCLTech

Create a Replace OSD Operation

Verb URI
POST vl/osdmgmt/replace osd

Note:

Login into any controller node and execute “ceph osd tree” and get any osd id from the
storage node listed.

Example
CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-Type:
application/json" \-X POST "https://<POD IP>:8445/v1/osdmgmt/replace_osd" \d

{osdmgmt_request": {command": "create","action": "replace-osd","locator": "False","json_display":

"False","servers": "<Storage server name>","osd": "<osd.ld from “ceph osd tree”>","tag": "all","uuid":
|I|I}}l
JSON Request

POST /v1/osdmgmt/replace osd Accept: application/json '{"osdmgmt request":

{"command": "create",

"action": "replace-osd",

"locator": "False", "json display": "False", "servers": "f24-michigan-micro-
l"’ "OSd": "OSd-9", "uuid": ""}}'

JSON Response
201 Created
Content-Type: application/json
{

"status": "not run",

"osdmgmt request": "{u'uuid': '5140f6fb-dca3-4801-8c44-89b293405310",
u'json display': u'False', u'servers': u'f24-michigan-micro-1', u'locator':
u'False', u'command': u'create',

u'action': u'replace-osd', u'osd': u'osd.9'}", "created at": "2018-03-
09T15:07:10.731220+00:00", "updated at": null, "action": "replace-osd",
"osdmgmt result": ""

}

}

List Check OSD Operation

Verb | URI

GET | vl/osdmgmt/list/? action=
{check-o0sds, replace-osd}

Example

CURI Command:

68

HCLTech

curl -k -u admin:<Password> \-H "Accept: application/json" \-X GET "https://<POD
IP>:8445/v1/osdmgmt/list/?action=check-osds&role=all"

JSON Request
GET /v1/osdmgmt/list/?action=check-osds

JSON Response
200 OK
Content-Type: application/Jjson
{

'4efd0be8-a76c-4bc3-89ce-142ded458d844"': {'action': 'check-osds',
'created at': '2018-03-08 21:31:01+00:00",
'status': 'osdmgmt running', 'uuid':

'4efd0be8-a76c-4bc3-89ce-142ded458d844"'},

'5fd4£f9b5-786a-4a21-a70f-bffac70a3f3f': {'action': 'check-osds',
'created at': '2018-03-08 21:11:13+00:00",

'status': 'osdmgmt completed', 'uuid':

'5fd4f9Op5-786a-4a21-a70f-bffac70a3£3f'},

'9c64ee52-bed5-4b69-91a2-d589411dd223"': {'action': 'check-osds',
'created at': '2018-03-08 21:26:15+00:00"',

'status': 'osdmgmt completed', 'uuid':

'9c64eeb52-bed5-4b69-91a2-d589411dd223"}

}
}

Show a Completed osdmgmt Operation
Verb | URI
GET | vl/osdmgmt/show/?u
uid=<uuid>
Example
CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-X GET "https://<POD
IP>:8445/v1/osdmgmt/show/?uuid=POD |P"

JSON Request
GET /v1/osdmgmt/show/?uuid=9c64ee52-bed5-4b69-91a2-d589411dd223

JSON Response
200 OK
Content-Type: application/json
{

'action': 'check-osds',

'created at': '2018-03-08 21:26:15+00:00"',

'osdmgmt request': "{u'uuid': '9c6deed2-bed5-4b69-91a2-d589411dd223",
u'json display': u'False', u'servers': u'', u'locator': u'False', u'command':

u'create', u'action':
u'check-osds', u'osd': u'None'}",

69

HCLTech

'osdmgmt result': '{"status": "PROCESSED", "message": ["{\'Overall_Status\':
\'"PASS\"',

\'Result\': { ommitted for doc }}]}', 'status': 'osdmgmt completed',
'updated at': '2018-03-08 21:27:16+00:00"', 'uuid': 'Oc64ee52-bed5-4b69-91az2-
d589411dd223"

}
}

Delete a Completed osdmgmt Operation

Verb URI
DELETE vl/osdmgmt/delete/?uuid=<uuid>
Example

CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-X DELETE "https://<POD
IP>:8445/v1/osdmgmt/delete/?uuid=<UUID>"

JSON Request
DELETE /vl1/osdmgmt/delete/?uuid=9c64ee52-bed5-4b69-91a2-d589411dd223

JSON Response
200 OK
Content-Type: application/json
{

'error': 'None',
'message': 'UUID 9c64ee52-bed5-4b69-91a2-d589411dd223 deleted from
database', 'status': 'deleted', 'uuid': '9c64ee52-bed5-4b69-91a2-d589411dd223"'

}
}

Hardware Management Utility
REST wrapper to control the execution of our query information from the hardware validation utility.

Create a Validate Operation

Verb URI
POST /v1/hardwaremgmt/validate

Curl Command:

curl -k -X POST "https://[<br_api ip>]:8445/v1/hardwaremgmt/validate" \-H "Content-Type: application/json" \-
u admin:<Rest api admin Password> \-d '{

"hwmgmt_request": {

"command": "create",

70

HCLTech

"action": "validate",
"hosts": "None",
"file": "None",
"feature_list": "all",
"uuid": ""

}

y

JSON Request

POST /vl/hardwaremgmt/validate '{"hwmgmt request": {"command": "create",
"action": "validate", "hosts": "None",
"file": "None", "feature list": "all", "uuid": ""}}'

feature_list is a comma separated list of valid features for the given POD

JSON Response

201 Created

Content-Type: application/json

{

‘action’: ‘validate,’

‘created at’: ‘2018-03-08T22:01:22.195232+00:00",

‘hwmgmt request’: “{u’feature list’: u’all’, u’command’: u’create’, u’file’:
None, u’action’: u’validate’, u’hosts’: None, u’uuid’: '89e094d8-b246-4620-
afca- ba3529385cac’ }”,

‘*hwmgmt result’: ‘',

‘status’: ‘not run’, ‘updated at’: ‘None’

}

Create a Validate Operation for Failure

Verb URI

GET /v1l/hardwaremgmt/resolve failures

JSON Request
POST /vl/hardwaremgmt/resolve failures

{

"hwmgmt request": { "command": "create", "action": "resolve-failures",
"hosts": "None",
"file": "None", "feature list": "all", "uuid": ""}

}

feature_list is a comma separated list of valid features for the given POD

Curl Command:

71

HCLTech

curl -k -X GET "https://[br_api ip]:8445/v1/hardwaremgmt/resolve_failures" -u admin:<Rest api admin password> -H
"Accept: application/json

JSON Response

201 Created
Content-Type: application/json

{

"status": "not run",

"created at": "2018-03-09T15:47:36.503712+00:00",

"hwmgmt request": "{u'feature list': u'all', u'command': u'create', u'file':
None, u'action': u'resolve-failures', u'hosts': None, u'uuid': '49dcldc9-3170-
4f68-b152-0£99%0d19f7b1"}",

"updated at": "",

"action": "resolve-failures", "hwmgmt result": ""

}
List a Validate Operation

Verb URI
GET vl/hardwaremgmt/list

Curl Command:

curl -k -X GET "https://[br_api ip]:8445/v1/hardwaremgmt/list" \-u admin:<Rest api admin password> \-H "Accept:
application/json"

JSON Request
GET /vl/hardwaremgmt/list

JSON Response
200 OK
Content-Type: application/json
{'89e094d8-b246-4620-afca-ba3529385cac': {'action': 'validate',
'created at': '2018-03-08 22:01:22400:00",

'feature list': 'all',

'status': 'hardwaremgmt completed', 'uuid':

'89e094d8-b246-4620-afca-ba3529385cac'},

'9£70e872-a888-439%9a-8661-2d2f36a4f4bl': {'action': 'validate', 'created at':
'2018-03-08 20:34:32+00:00",

'feature list': 'all',

'status': 'hardwaremgmt completed', 'uuid':

9f70e872-a888-439a-8661-2d2f36a4£f4bl"'}
}

Show a Completed hardwaremgmt Operation

Verb | URI
GET /v1/hardwaremgmt
/show

/?uuid=<uuid>

72

https://[br_api/

HCLTech

Curl Command:

curl -k -X GET "https://[br_api ip]:8445/v1/hardwaremgmt/show" \-u admin:<Rest api admin password> \-H "Accept:
application/json"Uuid :” <uuid>"

JSON Request
GET /vl1/hardwaremgmt/show/?uuid=9f70e872-a888-439%9a-8661-2d2f36a4f4db

JSON Response
200 OK
Content-Type: application/json

{

'action': 'validate',

'created at': '2018-03-08 20:34:32+00:00"',

'feature list': 'all',

'hwmgmt request': "{u'feature list': u'all', u'hosts': None, u'file': None,
u'action': u'validate', u'command': u'create', u'uuid': '9f70e872-a888-439%a-
8661- 2d2f36a4d4fdbl'}",

'hwmgmt result': '{"status": "PROCESSED", "message": "Validate of all
completed", "results": {"status": "PASS", "results": [{"status": "PASS",
"name": "CIMC Firmware Version

Check", "err": null}, {"status": "PASS", "name": "All Onboard LOM Ports
Check", "err":

null}, {"status": "PASS", "name": "PCIe Slot: HBA Status Check", "err":

null}, {"status":

"PASS", "name": "Server Power Status Check", "err": null}, {"status":
"PASS", "name": "NFV Config Check", "err": null}, {"status": "PASS", "name":
"Physical Drives Check", "err":

null}, {"status": "PASS", "name": "PCIe Slot(s) OptionROM Check", "err":
null}, {"status": "PASS", "name": "Intel Network Adapter Check", "err":
null}]}}', 'status': 'hardwaremgmt completed', 'updated at': '2018-03-08

20:38:02+00:00", 'uwuid': '9f70e872-a888-439%9a-8661-2d2f36a4f4bl’

Delete a Completed hardwaremgmt Operation

Verb URI
DELETE @ /vl/hardwaremgmt/delete/?uuid=<uuid>

Curl Command:

curl -k -X DELETE "https://[br_api ip]:8445/v1/hardwaremgmt/delete/?uuid=<uuid>" \-u admin:<Rest api admin
password> \-H "Accept: application/json"

JSON Request
DELETE /vl/hardwaremgmt/delete/?uuid=9f70e872-a888-439a-8661-2d2f36a4f4bl

JSON Response
200 OK
Content-Type: application/json
{

'error': 'None',

73

https://[br_api/

ClTech

'message': 'UUID 9f70e872-a888-439%9a-8661-2d2f36a4f4bl deleted from
database', 'status': 'deleted', 'uuid': '9f70e872-a888-439a-8661-2d2f36ad4f4dbl’
}

List Password Secrets

Command

curl -1 -X GET -H 'Content-Type: application/json' -u admin:**** -H
'"Accept: application/json'

--cacert /var/www/mercury/mercury-ca.crt
https://172.31.231.17:8445/v1/secrets

Response

{ '"HEAT KEYSTONE PASSWORD': '***',6 'CINDER KEYSTONE PASSWORD': '***!
}

Hardware Management Utility
e Create a Validate Operation
e Create a Validate Operation for Failure
e Create a Validate Operation
e Show a Completed hardwaremgmt Operation
e Delete a Completed hardwaremgmt Operation
REST wrapper to control the execution of or query information from the hardware validation utility.

Create a Validate Operation

Verb URI
POST /vl/hardwaremgm
t/validate

JSON Request

POST /vl/hardwaremgmt/validate '{"hwmgmt request": {"command":

"create",

"action": "validate", "hosts": "None", "file": "None",

"feature list": "all", "uuid": ""}}'

Feature list is a comma separated list of valid features for the
given

pod.

74

HCLTech

Curl Command:

curl -k -X POST "https://[<br_api ip>]:8445/v1/hardwaremgmt/validate" \-H "Content-Type: application/json" \-u
admin:<Rest api admin Password> \-d '{

"hwmgmt_request": {

"command": "create",

"action": "validate",
"hosts": "None",

"file": "None",

"feature_list": "all",

lluuidll: nn

}I
JSON Response

201 Created

Content-Type: application/json

{

'action': 'validate',

'created at': '2018-03-08T22:01:22.195232+00:00",

'hwmgmt request': "{u'feature list': u'all', u'command': u'create',
u'file': None, u'action': u'validate', u'hosts': None,

u'uuid': '89e094d8-b246-4620-afca-ba3529385c'}", 'hwmgmt result':
T

14
'status': 'not run', 'updated at': 'None'
}
Create a Validate Operation for Failure

Verb URI

GET /v1l/hardwaremgmt/resolve failures

Curl Command:

curl -k -X GET "https://[br_api ip]:8445/v1/hardwaremgmt/resolve_failures" -u admin:<Rest api admin password> -H
"Accept: application/json

JSON Request

75

https://[br_api/

ClTech

POST /vl/hardwaremgmt/resolve failures

{

"hwmgmt request": { "command": "create",
"action": "resolve-failures", "hosts": "None",
"file": "None",

"feature list": "all", "uuid": ""}

}

feature list is a comma separated list of valid features for
given POD

JSON Response

201 Created

Content-Type: application/json
{

"status": "not run",
"created at": "2018-03-09T15:47:36.503712+00:00",

"hwmgmt request": "{u'feature list': u'all', u'command':
u'create', u'file': None, u'action': u'resolve-failures',
u'hosts': None, u'uuid': '49dcldc9-3170-4f68-bl52-
0£99bd19f7b1"}",

"updated at": "",

"action": "resolve-failures", "hwmgmt result": ""

}

List Validate Operation

Verb URI
GET vl/hardwarem
gmt/list

JSON Request

76

the

ClTech

Curl Command:

curl -k -X GET "https://[br_api ip]:8445/v1/hardwaremgmt/list" \-u admin:<Rest api admin password> \-H "Accept:
application/json"

JSON Request

GET /vl/hardwaremgmt/list

JSON Response
200 OK
Content-Type: application/json
{'89e094d8-b246-4620-afca-ba3529385cac': {'action': 'validate',
'created_at': '2018-03-08 22:
01:22+00:00',
‘feature_list'": 'all’,
'status":
'hardwaremgmt_completed',
'uuid': '89e094d8-b246-4620
afca-ba3529385cac'},
'9f70e872-a888-439a-8661-2d2f36a4f4b1": {'action': 'validate',
'created_at': '2018-03-08 20:
34:32+00:00',
‘feature_list'": 'all’,
'status":
'hardwaremgmt_completed’,
'uuid':'9f70e872-a888-439a-8661-2d2f36a4f4b1'}

}

Show a Completed hardwaremgmt Operation

Verb URI
GET | /vl/hardwaremgmt
/show

/uuid=<uuid>
JSON Request

GET /vl1/hardwaremgmt/show/?uuid=9£f70e872-a888-439%9a-8661-2d2f36a4f4b

Curl Command:

curl -k -X GET "https://[br_api ip]:8445/v1/hardwaremgmt/show" \-u admin:<Rest api admin password> \-H
"Accept: application/json"

JSON Response

77

HCLTech

200 OK
Content-Type: application/Jjson
{'89e094d8-b246-4620-afca-ba3529385cac': {'action': 'validate',

'created at': '2018-03-08 22:
01:22+00:00",
'feature list': 'all', 'status':

'hardwaremgmt completed’,

'uuid': '89e094d8-b246-4620-

afca-ba3529385cac'},

'9f70e872-a888-439a-8661-2d2f36a4f4bl': {'action': 'validate',

'created at': '2018-03-08 20:
34:32+00:00",
'feature list': 'all', 'status':

'hardwaremgmt completed',
'uuid':'9£70e872-a888-439a-8661-2d2f36a4f4bl"'}
}

78

ClTech

Delete a Completed hardwaremgmt Operation

200 OK
Content-Type: application/json
{

'action': 'validate',

'created at': '2018-03-08 20:34:32+00:00",

'feature list': 'all',

'hwmgmt request': "{u'feature list': u'all', u'hosts': None,

u'file': None, u'action': u'validate', u'command': u'create', u'uuid':
'9f70e872-a888-439a-8661-2d2f36ad4fdbl"'}",
'hwmgmt result':

'"{"status": "PROCESSED", "message": "Validate of all completed",
"results": {"status": "PASS", "results": [{"status": "PASS", "name":
"CIMC Firmware Version

Check", "err": null}, {"status": "PASS", "name": "All Onboard LOM
Ports Check", "err":

null}, {"status": "PASS", "name": "PCIe Slot: HBA Status Check",
"err": null}, {"status": "PASS", "name": "Server Power Status Check",
"err": null}, {"status":

"PASS", "name": "NFV Config Check", "err": null}, {"status":
"PASS", "name": "Physical Drives Check", "err":

null}, {"status": "PASS",

"name": "PCIe Slot(s) OptionROM Check", "err": null}, {"status":
"PASS", "name": "Intel Network Adapter Check", "err": null}]}}',

'status': 'hardwaremgmt completed', 'updated at': '2018-03-08

20:38:02+00:00", 'uuid': '9f70e872-a888-439a-8661-2d2f36a4f4bl"’

Verb URI
DELETE @ /vl/hardwaremgmt/delete/?uuid=<uuid>

JSON Request

DELETE /vl/hardwaremgmt/delete/?uuid=9f70e872-a888-439%9a-8661-
2d2f36a4f4bl

Curl Command:

curl -k -X DELETE "https://[br_api ip]:8445/v1/hardwaremgmt/delete/?uuid=<uuid>" \-u admin:<Rest api
admin password> \-H "Accept: application/json"

79

https://[br_api/

ClLTech

JSON Response

200 OK
Content-Type: application/json
{

'error': 'None',

'message': 'UUID 9f70e872-a888-439a-8661-2d2f36a4f4bl deleted from
database', 'status': 'deleted',

'uuid': '9f70e872-a888-439%9a-8661-2d2f36a4fdbl’

}

80

HCLTech

Disk and OSD Maintenance

« Disk Maintenance information

e Create a Check Disk operation

e Create a Replace Disk operation

e List Check Disk Operation

e Show a Completed diskmgmt Operation

e Delete a Completed diskmgmt Operation
. OSD Maintenance information

e Create an OSD Disk Operation

e Create Replace OSD Operation

e List Check OSD Operation

e Show a Completed osdmgmt Operation

e Delete a Completed osdmgmt Operation
Disk Maintenance information

REST wrapper to query information about RAID disks on Pod nodes. This returns the RAID disk
information of all or a selection of RAID disks available in the Pod.

The disk management extension to the VIM REST API enables support for Disk Management
actions

Create a Check Disk Operation

Resource URI

eVerb URI

POST /v1/diskmgmt/ch
eck disks

Example
CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-
Type:application/json" \-X POST "https://<Pod IP>:8445/v1/diskmgmt/check_disks" \-d

{"diskmgmt_request": {"command": "create","action": "check-disks","role": "control","locator":

"False","json_display": "False","servers": "","uuid": ""}}'

81

HCLTech

JSON Request
POST /v1/diskmgmt/check disks Accept: application/json

'{"diskmgmt request": {"command": "create",

"action": "check-disks",

"role": "control",

"locator": "False", "json display": "False", "servers": "",
"uuid": ""}}] _

JSON Response

201 Created

Content-Type: application/json
{

'action': 'check-disks',
'created at': '2018-03-08T02:03:18.170849+00:00",
'diskmgmt request': "{u'uuid': '0729bdea-ccl9-440£-8339-

ab2le76be84b’,
u'json display': u'False',

u'servers': u'', u'locator': u'False', u'role': u'control',
u'action': u'check-disks', u'command': u'create'}",
'diskmgmt result': '', 'status': 'not run', 'updated at': 'None'

}

82

LTech

201 Created
Content-Type: application/json
{

"status": "not run",

"diskmgmt request": "{u'uuid': 'cb353£f41-6d25-4190-9386-
330e971603c9"',

u'json display': u'False', u'servers': u'', u'locator': u'False',
u'role': u'control',

u'action': u'replace-disks', u'command': u'create'}",

"created at": "2018-03-09T12:43:41.289531+00:00",

"updated at": "", "diskmgmt result": "", "action": "replace-disks"}

Create a Replace Disk Operation

Verb | URI
POST | /v1/diskmgmt/rep

lace disks
Example
CURL Command:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-Type:
application/json" \-X POST "https://<Pod |IP>:8445/v1/diskmgmt/replace_disks" \-d

{"diskmgmt_request": {"command": "create","action": "replace-disks","role": "control","locator":

"False","json_display": "False","servers": "","uuid": ""}}'
JSON Request

POST /v1/diskmgmt/replace disks Accept: application/json

'{"diskmgmt request": {"command": "create",
"action": "J?eplace—disks", "role": "control",
"locator": "False", "json display": "False", "servers": "", "uuid":
mn } } |
JSON Response
201 Created
Content-Type: application/json

{
"status": "not_run",
"diskmgmt_request": "{u'uuid': 'cb353f41-6d25-4190-9386-330e971603c9',
u'json_display': u'False’,
u'servers': u",
u'locator': u'False’,
u'role': u'control’,
u'action': u'replace-disks',
u'command': u'create'}",

83

HCLTech

"created_at": "2018-03-09T12:43:41.289531+00:00",

"updated_at": "",

"diskmgmt_result": "",

"action": "replace-disks"}

List Check Disk Operation

Verb URI

GET /vl1/diskmgmt/list/?action=
{check-disks, replace-disks
\&role={all,management,control, compute}

Example
Curl Command:

curl -k -u admin:<Rest Api Password> \-H "Accept: application/json" \-X GET "https://<br_api
ip>:8445/v1/diskmgmt/list/?action=check-disks&role=all"
JSON Request

GET /vl1/diskmgmt/list/?action=check-disks\&role=all

84

HCLTech

JSON Response

200 OK
Content-Type: application/json
{

'Obe7a55a-37fe-43al1-a975-cbf93ac78893"': {'action':

'created at': '2018-03-05 14:
45:45+00:00",

'role': 'compute', 'status':

'diskmgmt completed',

'uuid': 'Obe7ab55a-37fe-43al-

a975-cbf93ac78893"'},

'861d4d73-ffee-40bf-9348-13afc697ee3d': {'action':

'created at': '2018-03-05 14:
44:47+00:00",
'role': 'control', 'status':

'diskmgmt completed',
'uuid': '861d4d73-ffee-40bf-
9348-13afc697ee3d'},

'cdfdl8cl-6346-47a2-b0£5-661305b5d160"': {'action':

'created at': '2018-03-05 14:

43:50+00:00",

'role': 'all',

'status': 'diskmgmt completed',

'uuid': 'cdfd1l8cl-6346-47a2-b0£f5-661305b5d160"'}}
}

Show a Completed diskmgmt Operation

Verb | URI

GET | vl/diskmgmt/show/?uuid=<uuid>

Example

Curl Command
JSON Request

JSON Response

'check-disks',

'check-disks',

'check-disks',

GET /vl/diskmgmt/show/?uuid=d24036c6-4557-4c12-8695-a92f6f9315ed

85

HCLTech

200 OK

Content-Type: application/json

{'action': 'check-disks',

'created at': '2018-03-07 21:46:41+00:00",

'diskmgmt request': "{u'uuid': 'd24036c6-4557-4cl2-8695-
a92f6£9315ed', u'json display': False,

u'servers': u'f24-michigan-micro-2', u'locator': False,

u tu u , u i :u -di , u g
'role' 'compute' 'action' 'check-disks' 'command'
u'create'}",

'diskmgmt result': '{"status": "PROCESSED", "message":
["{\'Overall Status\': \'PASS\',

\'Result\': {\'fcfg disks results list\': [],
\'spare disks results list\': [],

\'raid results list\': [{\'RAID levell\': \'RAIDI\', \'Disk Med\':

\'HDD\', \'server\':
\'"7.7.7.6\", \'RAID type\': \'HW\', \'host\': \'f24-michigan-micro-
2\', \'role\':

\'block storage control compute\', \'VD health\': \'Optl\', \'Num
VDs\': 1, \'Num PDs\': 8, \'RAID health\': \'Opt\'}],

\'bad disks results list\': [], \'rbld disks results list\': [],
\'add as spares disks results list\': []}}"]}"',

'role': 'compute',

'status': 'diskmgmt completed', 'updated at': '2018-03-07

21:47:35+00:00",
'uuid': 'd24036¢c6-4557-4cl12-8695-a92£6£9315ed’
}

Delete a Completed diskmgmt Operation

Verb URI
DELETE vl/diskmgmt/delete/?uuid=<uuid>

Example
JSON Request

DELETE /v1/diskmgmt/delete/?uuid=d24036c6-4557-4c12-8695-
a92f6£9315ed

JSON Response

86

HCLTech

200 OK

Content-Type: application/json

{

"status": "deleted",

"message": "UUID d24036¢c6-4557-4c12-8695-a92f6f9315ed deleted from
database", "uuid": "d24036c6-4557-4c12-8695-a92f6£9315ed",

"error": "None"

}

OSD Maintenance Information

REST wrapper to query information about OSD on Pod storage nodes. This returns to the OSD
status information of all or a selection of OSDs available in the Pod.

Create an OSD Disk Operation

Verb URI
POST /vl/osdmgmt/check_osds

Example
JSON Request
POST /v1/osdmgmt/osdmgmt/check osds '{"osdmgmt request":

{"command": "create",
"action": "check-osds",
"locator": "False", "json display": "False",
"servers": "",
"osd": "None",
"uuid": ""}}]

JSON Response

201 Created

Content-Type: application/json
{

'action': 'check-osds',

'created at': '2018-03-08T21:26:15.329195+00:00"',

'osdmgmt request': "{u'uuid': '9c64ee52-bed5-4b69-91a2-
d589411dd223"', u'json display': u'False', u'servers': u'', u'locator':
u'False', u'command': u'create', u'action':

u'check-osds', u'osd': u'None'}", 'osdmgmt result': '"',

'status': 'nmot run', 'updated at': 'None'

}

87

ClLTec

Create a Replace OSD Operation
Verb URI

POST vl/osdmgmt/replace_osd

Example

JSON Request

POST /v1/osdmgmt/replace osd Accept: application/json

'{"osdmgmt request": {"command": "create",

"action": "replace-osd",

"locator": "False", "json display": "False",
michigan-micro-1", "osd": "osd.9",

"uuid": ""}}]

"servers": "f24-

JSON Response

201 Created

Content-Type: application/json

{

"status": "not run",

"osdmgmt request": "{u'uuid': '5140f6fb-dca3-4801-8c44-
890293405310', u'json display': u'False',

u'servers': u'f24-michigan-micro-1",

u'command': u'create', u'action':
u'osd.9'}",

"created at": "2018-03-09T15:07:10.731220+00:00",

"updated at": null, "action": "replace-osd", "osdmgmt result":

}

u'locator': u'False',
u'replace-osd', u'osd':

List Check OSD Operation

Verb | URI

GET vl/osdmgmt/list/? action=
{check-osds, replace-osd}

Example
JSON Request
GET /vl1/osdmgmt/list/?action=check-osds

JSON Response

88

HCLTech

200 OK

Content-Type: application/json

{

'4efd0be8-a76c-4bc3-89ce-142ded458d844': {'action': 'check-osds',
'created at': '2018-03-08 21:

31:01+00:00",

'status': 'osdmgmt running', 'uuid': '4efdObe8-a76c-4bc3-
89ce-142ded458d844"'},

'5fd4£f9b5-786a-4a21-a70f-bffac70a3f3f': {'action': 'check-osds',
'created at': '2018-03-08 21:

11:13+00:00",

'status':

'osdmgmt completed',
'uuid':'5£fd4f9p5-786a-4a2l-
a70f-bffac70a3f3f'},

'9c64ee52-bed5-4b69-91a2-d589411dd223"': {'action': 'check-osds',
'created at': '2018-03-08 21:

26:15+00:00",

'status':

'osdmgmt completed’',

'uuid': '9c64ee52-bed5-4b69-91a2-d589411dd223"}

}

}

Show a Completed osdmgmt Operation
Verb URI

v1/osdmgmt/show/?uui
d=<uuid>
GET

Example
JSON Request

GET /v1/osdmgmt/show/?uuid=9c64ee52-bed5-4b69-91a2-d589411dd223

89

HCLTech

JSON Response

200 OK

Content-Type: application/json

{

'action': 'check-osds',

'created at': '2018-03-08 21:26:15+00:00",

'osdmgmt request': "

{u'uuid': '9cb6dee52-bed5-4b69-91a2-d589411dd223"', u'json display':
u'False',

u'servers': u'', u'locator': u'False',

u'command': u'create', u'action':

u'check-osds', u'osd': u'None'}",

'osdmgmt result': '{"status": "PROCESSED", "message":
["{\'Overall Status\': \'PASS\',

\'Result\': { ommitted for doc }}1}', 'status':
'osdmgmt completed', 'updated at': '2018-03-08 21:27:16+00:00",

'uuid': '9c64eeb2-bed5-40b69-91a2-d589411dd223"

}

}

Delete a Completed osdmgmt Operation

Verb URI
DELETE = v1/osdmgmt/delete/?uuid=<uuid>

Example
JSON Request

DELETE /v1/osdmgmt/delete/?uuid=9c64ee52-bed5-4b69-91a2-
d589411dd223

JSON Response

200 OK
Content-Type: application/json
{

'error': 'None',
'message': 'UUID 9c64eeb52-bed5-4b69-91a2-d589411dd223 deleted from
database', 'status': 'deleted',

'uuid': '9c64eeb2-bed5-4b69-91a2-d589411dd223"
}

}
Cloud Sanity
e Create a cloud-sanity Test

e List cloud-sanity Test Results

90

HCLTech

e List Specific cloud-sanity Test Results
e Show cloud-sanity Test Results
e Delete cloud-sanity Test Results

REST wrapper to run cloud-sanity test suites. The cloud-sanity extension to the VIM REST API
enables support for managing cloud-sanity test actions.

Create a cloud-sanity Test

Verb URI
Post /vl/cloud-sanity/create
Example

Curl Command:

curl -i -X POST /-H "Accept: application/json" \-H "Content-Type: application/json" \-u
admin:<Password>\cacert/<mercuryca.crt path>\ https://<Pod IP>:8445/v1/cloudsanity/create \\-d
{"cloudsanity request": {"command": "create","action": "test","test_ name": "cephmon","uuid": "<UU
ID of the node>"}}

JSON Request

POST /vl/cloudsanity/create Accept: application/json

'{"cloudsanity request": {"command": "create",

"action": "test", "test name": "cephmon", "uuid": ""}}'

test name can be all, management, control, compute, cephmon, cephosd

JSON Response

201 Created
{

'cloudsanity request': "{u'action': u'test', u'command': u'create',
u'uuid': '5dff1662-3d33-4901-808d-479927c01dde",

u'test name': u'cephmon'}", 'cloudsanity result': '',

'created at': '2018-01-26T20:32:20.436445",

'status': 'not run', 'test name': 'cephmon', 'updated at': "'

}

List cloud-sanity Test Results

Verb URI
GET /vl/cloud-sanity

JSON Request

GET /vl/cloudsanity

JSON Response

91

ClTech

200 OK

{ '0b91746£f-90b4-4355-a748-727c2e5c59c5":

'action': 'test',
25 12:08:22",

'cloudsanity completed', 'management',
4355-a748-727c2e5c59c5"},

'5695¢cb31-39%9e4-4be2-9dee-09%e7daffc2e7"':

'test', 01-25 12:03:06",
'cloudsanity completed',

dbe2-9dee-09%e7daffc2e7'},

'5dff1662-3d33-4901-808d-479927c01ldde":

'test',
26 20:32:20",

'cloudsanity completed',

4901-808d-479927c01dde"},

'7946255d-df58-4432-b729-20cfl6ebbbab"':

'test',
25 12:05:506"',

'cloudsanity completed',
4432-b729-20cfl6eb5Sbab'},

'797d79%a-9¢e0-4e11-9d9e-47791dd05e07":

'test',
'created at': '2018-01-25 12:05:11",

92

{

{

{

{

{

'action':

'action':

'action':

'action':

'created at': '2018-01-
'status':

'test name':

'uuid': 'O0b91746£f-90b4-
'created at': '2018-
'status':

'test name': 'compute',
'uuid': '5695cb31-39%e4-
'created at': '2018-01-
'status':

'test name': 'cephmon',
'uuid': '5dff1662-3d33-
'created at': '2018-01-
'status':

'test name': 'cephosd',
'uuid': '7946255d-df58-
‘status’:

HCLTech

'cloudsanity completed',

4e11-9d9e-47791dd05e07"'},
'962e2c8e-c7b0-4e24-87¢c1-528cad84002¢c': { 'action': 'test',

26 18:52:31"',

'cloudsanity completed',

4e24-87¢c1-528cad84002c'},
'd0111530-ee3b-45df-994¢c-a0917£d18el1l1': { 'action': 'test',
26 18:46:23",

'cloudsanity completed',

45df-994c-a0917fd18ell1'}}
'test name': 'cephmon', 'uuid': '797d79ba-9eel0-

'created at': '2018-01- 'status':
'test name': 'control', 'uuid': '962e2c8e-c7b0-
'created at': '2018-01- 'status':
'test name': 'control', 'uuid': 'd0111530-ee3b-

List Specific cloud-sanity Test Results

Verb URI
GET /v1l/cloud-sanity/list/?test name={all, management,
control, compute, cephmon, cephosd}
CURL Command:

curl-i -X GET \-H "Accept: application/json" \-u admin:<Password> \--cacert /<mercury-ca.crt
path>\https://<POD IP>:8445/v1/cloudsanity/list/?test_name=cephmon

JSON Request

GET /vl/cloudsanity/list/?test name=cephmon Accept:
application/Jjson

93

HCLTech

JSON Response

Show cloud-sanity Test Results

Verb ' URI

200 OK

{ '5dffl1662-3d33-4901-808d-479927c01ldde': { 'action'

'created at': '2018-

01-26 20:32:20",

'status':

'cloudsanity completed',

'test name': 'cephmon', 'uuid': '5dffl1662-3d33-
4901-808d-479927c01dde"'},
'797d79ba-9ee0-4e11-9d9e-47791dd05e07"': { 'action':
'created at': '2018-01-

25 12205811,

'status':
'cloudsanity completed',
'test name': 'cephmon', 'uuid': '797d79ba-

9ee0-4e11-9d9e-47791dd05e07" } }

GET | /vl/cloud-

sanity/sh

ow/?uuid=<uuid>

CURL Command:
curl -X GET "https://<host>:<port>/v1/cloudsanity/show/?uuid=<uu id>" \-H "Accept:
application/json" \-H "Authorization: Bearer <access_token>"

JSON Request

: 'test',

'test',

GET /vl/cloudsanity/show/?uuid=d0111530-ee3b-45df-994c-a0917£fd18ell

94

ClTech

JSON Response
200 OK
{ 'action': 'test', 'cloudsanity request':
"{u'action': u'test', u'command': u'create',
u'uuid': 'd0111530-ee3b-45df-994c-a0917£d18ell', u'test name':
u'control'}",
'cloudsanity result':

'{"status": "PROCESSED",

"message": {"status": "Pass",

"message": "[PASSED] Cloud Sanity Control Checks Passed",
"results": {"control": {"ping all controller nodes": "PASSED",

"check rabbitmg is running": "PASSED",
"check rabbitmg cluster status": "PASSED", "check nova service list":
"PASSED", "ping internal vip": "PASSED",
"disk maintenance raid health": "PASSED",
"check mariadb cluster size": "PASSED", "disk maintenance vd health":
"PASSED"}}}}',

'created at': '2018-01-26 18:46:23",

'status': 'cloudsanity completed', 'test name': 'control',

'updated at': '2018-01-26 18:47:58",

'uuid': 'd0111530-ee3b-45df-994c-a0917£fd18ell"}

Delete cloud-sanity Test Results

Verb URI

DELETE | /v1/cloud-
sanity/delete/?uuid=<uuid>

Curl Command:

curl -X DELETE "https://<host>:<port>/v1/cloudsanity/delete/?uuid=<uu id>" \-H "Accept:
application/json" \-u admin:<password>

GET /vl/cloudsanity/delete/?uuid=444aa4c8-d2ba-4379-b035-
0f47c686d1lc4
JSON Response

200 OK

{

"status": "deleted",

"message": "UUID 444aa4c8-d2ba-4379-b035-0f47c686d1lcd deleted from
database", "uuid": "444aa4c8-d2ba-4379-b035-0f47c686d1lc4d",

"error": "None"

}

95

HCLTech

Mandatory/Optional Feature Mapping
. Mandatory Feature Mapping
+ Optional Feature Mapping

Mandatory Feature Mapping

POST Request URL
/vl/releasemapping/mandatory features mapping

CURL Command:

curl -i -X GET \-H "Accept: application/json" \-u admin:Password \--cacert /<mercury-ca.crt
path>\https://<POD IP>:8445/v1/releasemapping/mandatory_features_mapping

JSON Response:
{
"mandatory": { "networkType": { "C": {
"feature status": true,

"values": [{"name": "VXLAN/Linux Bridge", "value":
"B": { "VXLAN/Linux Bridge"},], "insight label": "Tenant Network",
"desc": "Tenant Network"
}I }I
"feature status": true,
"values": [{"name": "VXLAN/Linux Bridge", "value":
"VXLAN/Linux Bridge"},], "insight label"”: "Tenant Network",
"desc": "Tenant Network"
t
"cephMode": ({
"all": |
"feature status": true,
"values": [{"name": "Central", "value": "Central"},], "insight label": "Ceph
Mode",
"desc": "Ceph Mode"
}
by
"podType": {
"C":
"feature status": true,
"B": { "values": [{"name": "Fullon", "value": "fullon"},],
"insight label": "POD Type",
i o "desc": "POD Type"
b
"feature status": true,
"values": [{"name": "Fullon", "value": "fullon"},],
"insight label": "POD Type",
"desc": "POD Type"

}

96

ClTech

"installMode": {

"all": {

"feature status": true,

"values": [{"name": "Connected", "value": "connected"},], "insight label":
"Install Mode",

"desc": "Install Mode"

}

}

b

"platformType": [{"name": "B-series", "value": "B"}, {"name": "C-series",
"Value": "c"}] ’

"postinstalllinks": {

"all" ’

"platformtype": Passwords"}

}

"view cloudpulse": {"alwayson": true, "feature status": true,
"platformtype":

"insight label": "Run VMTP", "desc": "Cloudpluse"}, "password reconfigure
{"alwayson": true, "feature status": true,

"all", "insight label": "Reconfigure Passwords", "desc": "Reconfigure

}

Optional Feature Mapping
CURL Command:

curl -i -X GET \-H "Accept: application/json" \-u admin:Password \--cacert /<mercury-ca.crt
path>\https://<POD IP>:8445/v1/releasemapping/optional_features_mapping

POST Request URL

/vl/releasemapping/optional features mapping

JSON Response:
[
{

"heat": {
"feature status": true, "insight label": "Heat",
"repeated redeployment": false, "reconfigurable": ["all"], "desc":

"Openstack HEAT service"

..... other features

97

HCLTech

Testing and Polling

e NFVBench Network Performance Testing
e Create NFVBench Run
e Status Polling
e Get Fixed Rate Test Result
e Execute NDR/PDR Test
e Get NDR/PDR Test Results
NFVBench Network Performance Testingg
Create NFVBench Run
Starts the network performance test with provided configuration.

REST API to create fixed rate test
Verb URI
Post | vl/nfvbench/ create ndr pdr test

Example

CURL Command:
curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-Type: application/json" \-X
POST "https://<Pod IP>:8445/
POST Request URL /vi/nfvbench/create fixed rate test
JSON Request

POST Request URL
/v1l/nfvbench/create fixed rate test JSON Request:
{"nfvbench request":

{

"duration sec": 20, "traffic profile": |
{

"name": "custom",

"l12frame size": ["64","IMIX", "1518"]

}

1y

"traffic": { "bidirectional": true,
"profile": "custom"

by
"flow count": 1000

}
}
JSON Response
98

HCLTech

201 CREATED
Content-Type: application/json
{

"status": "not run", "nfvbench request":
"

"duration sec": 20, "traffic profile": [
{

"name": "custom",

"l2frame size": ["64","IMIX","1518"]

}

1,

"traffic": {"bidirectional": true,
"profile": "custom"

b

"flow count": 1000

P

"created at": "2017-08-16T06:14:54.219106",

"updated at": null, "nfvbench result": "", "test name":
"Fixed Rate Test"

}

Status Polling

The polling status of NFVbench status can be nfvbench_running, nfvbench_failed, or nfvbench completed.
CURL COMMAND:

curl -k -u admin:<Password> \-H "Accept: application/json" \-H "Content-Type: application/json" \-X
GET "https://<Pod IP>:8445/v1/nfvbench/Fixed_Rate_Test"

Resource URI

Verb URI
GET vl/nfvbench/<test name>

Get Fixed Rate Test Result

CURL Commoand:

curl-i -X GET -H "Content-Type: application/json" -H "Accept: application/json" -u admin:<Password> --
cacert /<mercury-ca.crt path>"https://<PodIP>:8445/v1/nfvbench/get_ndr_pdr_test_result"

99

HCLTech

GET Request URL

/v1/upgrade/get fixed rate test result JSON Response:
Check If NFVbench Test is running

200 OK

Content-Type: application/json

{

"status": "nfvbench running",

"nfvbench request": '{"traffic": {"bidirectional": true, "profile":
"custom"}, "rate": "1000000pps",

"traffic profile": [{"l2frame size": ["1518"], "name": "custom"}],
"duration sec": 60, "flow count": 1000}', "nfvbench result": ""

"created at": "2017-05-30T21:40:40.394274", "updated at": "2017-05-

30T21:40:41.367279",
}

Check If NFVbench Test is completed

200 OK
Content-Type: application/json
{

"status": "nfvbench completed",

"nfvbench request": '{"traffic": {"bidirectional": true, "profile":
"custom"}, "rate": "1000000pps", "traffic profile": [{"l2frame size":
["1518"], "name": "custom"}], "duration sec": 60, "flow count":
1000}"', "nfvbench result": '{"status": "PROCESSED", "message":
{"date": "2017-08-15 23:15:04", "nfvbench version":

"0.9.3.dev2", }

"created at": "2017-05-30T21:40:40.394274", "updated at": "2017-05-

30T22:29:56.970779",
}

CURL Command:

curl -k -X POST "https://<Pod IP>:8445/v1/nfvbench/create_ndr_pdr_test" -H "Accept:
application/json" -H "Content-Type: application/json" -u admin:<Password> -d

@/tmp/req_NDR_PDR_Test.json

100

ClLTech

Execute NDR/PDR Test
POST Request URL
/vl/nfvbench/create ndr pdr test

Accept: application/json
{"nfvbench request":

{

"duration sec": 20, "traffic profile": [

{

"name": "custom",

"l12frame size": ["64","IMIX","1518"]

}

]I

"traffic": {"bidirectional": true, "profile": "custom"},

"flow count": 1000}}

JSON Response
201 CREATED
Content-Type: application/json

{

"status": "not run", "nfvbench request":

'{

"duration sec": 20,

"traffic profile": [{"name": "custom", "l2frame size":
["64","IMIX","1518"] }],

"traffic": {"bidirectional": true, "profile": "custom"},
"flow count": 1000}' "created at": "2017-08-16T07:18:41.652891",

"updated at": null, "nfvbench result": "", "test name":

"NDR PDR Test"

}
Get NDR/PDR Test Results

101

HCLTech

GET Request URL
/v1l/ nfvbench/get ndr pdr test result JSON Response:

If NFVbench NDR/PDR test is running
200 OK
Content-Type: application/json
{

"status": "nfvbench running", "nfvbench request": '{"duration sec":
20,

"traffic": {"bidirectional": true, "profile": "custom"},

"traffic profile": [{"l2frame size": ["64", "IMIX", "1518"],
"name": "custom"}], "flow count": 1000}',

"nfvbench result": ""

"created at": "2017-08-16T07:18:41.652891", "updated at": "2017-09-
30T22:29:56.970779",

}

If NFVbench NDR/PDR test is completed
200 OK
Content-Type: application/json
{
"status": "nfvbench completed", "nfvbench request":
'{"duration sec": 20,

"traffic": {"bidirectional": true, "profile": "custom"},

"traffic profile": [{"l2frame size": ["64", "IMIX", "1518"],
"name": "custom"}], "flow count":1000}', "nfvbench result":
'{"status": "PROCESSED",...}'

"created at": "2017-08-16T07:18:41.652891", "updated at": "2017-09-
30T22:29:56.970779",
}

102

ClTech

Post-Installation Operations

+ Create a Post Install Operation
+ Retrieve Post Install Operation Status

The following are the post install operations that can be performed, after the successful installation of
OpenStack. It uses a common api. Following is an Example:

. reconfigure

. reconfigure -regenerate passwords

. reconfigure -setpasswords,setopenstack_configs

. reconfigure -alertmanager_config, -alerting_rules_config
check-fernet-keys

resync-fernet-keys

rotate-fernet-keys

N o o s e N

Create a Post Install Operation

Resource URI
Verb URI

POST | /v1/mi
sc

Examples:
JSON Request

POST /vl1/misc
Accept: application/json
{"action": {"reconfigure": true}}

JSON Response

201 CREATED

Content-Type: application/json

{

"uuid": "7e30a671-bacf-4e3b-9a8f-5a1fd8a46733", "created at":
"2017-03-19T14:03:39.723914",

"updated at": null,

"operation status": "OperationScheduled", "operation logs": "",

"operation name": "{"reconfigure": true}"

}
JSON Request

103

HCLTech

POST /vl/misc

Accept: application/json

{"action": {"reconfigure": true, "alertmanager config":
<json config>}}

JSON Response

201 CREATED

Content-Type: application/json

{

"uuid": "68b67265-8£09-480e-8608-b8aff77elec’", "created at":
"2019-01-09T16:42:11.484604+00:00",

"updated at": null,

"operation status": "OperationScheduled", "operation logs": "",
"operation name": "{"alertmanager config": <json config>,
"reconfigure": true}"

}
Retrieve Post Install Operation Status

Resource URI
Verb URI

GET | /v1l/m
isc

Example
JSON Request

GET /vl/misc
Accept: application/json

JSON Response

201 CREATED

Content-Type: application/json

{

"uuid":

"7e30a671-bacf-4e3b-9a8f-5a1fd8a46733", "created at": "2017-03-
19T14:03:39.723914", "updated at": "2017-03-19T14:03:42.181180",

"operation status": "OperationRunning", "operation logs":
"XXXXXXXXXXXXXXXxX", "operation name": "{\"reconfigure\": true}"

}

104

HCLTech

Version and Hardware Information

« Version
+ Hardware Information
e Create a HWinfo Operation
e Retrieve Hwinfo Operation Results
e Get Node Hardware Information
Version
Retrieve the version of the VIM.

Resource URI
Verb URI

GET /v1/version

Example
CURL Command:

curl -k -X GET "htips://<Pod IP>:8445/v1/version" -H "Accept: application/json" -u
admin:<Password>

JSON Request

GET /vl/version
Accept: application/json

JSON Response

200 OK
Content-Type: application/json
{"version": "1.9.1"}

Hardware Information
REST Wrapper returns the hardware information available in the setupdata.

105

HCLTech

Create a HWinfo Operation

Resource URI
Verb | URI
GET | /v1/hwinfo

Example

CURL Command:
curl-k -u admin:<Password>\ -H "Accept: application/json"\ -H "Content-Type:

application/json" \-X POST "https://<Pod IP>:8445/v1/hwinfo" \-d "setupdata": "<uuid of setup
data>"}'

JSON Request

POST /vl1/hwinfo
Accept: application/json

{
"setupdata":"c94d7973-2fcc-4cdl1-832d-453d66e6b3bf"

}

JSON Response
201 CREATED
Content-Type: application/json
{

"status": "hwinfoscheduled",

"uuid": "928216dd-9828-407b-9739-8a7162bd0676",

"setupdata": "c94d7973-2fcc-4cdl-832d-453d66e6b3bf", "created at":
"2017-03-19T13:41:25.488524", "updated at": null, "hwinforesult": ""

}

Retrieve Hwinfo Operation Results

Resource URI
Verb URI
GET /vl1/hwinfo/{id}

Property:

id—The ID of the node you want to query.
Example

CURL Cmmmand:

curl -k -X GET "htips://<Pod IP>:8445/v1/hwinfo/789" -H "Accept: application/json" -u
admin:<Password>

JSON Request

106

ClTech

GET /v1/hwinfo/789 Accept: application/json

JSON Response

200 OK

Content-Type: application/json

{

"status": "hwinfosuccess",

"yuid": "928216dd-9828-407b-9739-8a7162bd0676",

"setupdata": "c94d7973-2fcc-4cdl-832d-453d66e6b3bf", "created at":
"2017-03-19T13:41:25.488524", "updated at":

"2017-03-19T13:42:05.087491",

"hwinforesult": "{\"172.29.172.73\": {\"firmware\":

............

.................

Get Node Hardware Information

Rest API helps you to get the hardware information of all the nodes in the pod through CIMC/UCSM.
o Total Memory
© Firmware Info (Model, Serial Number)
o CIMCIP

GET Request URL
/v1l/hwinfo Output Response

{

"hwinforesult": "{"control-server-2": {"memory": {"total memory":
"131072"}, "firmware": {"serial number": "FCH1905V16Q", "fw model":
"UCSC-C220-M4s"}, "cimc ip": "172.31.230.100", "storage":

{"num storage": 4}, "cisco vic adapters": {"product name": "UCS VIC
1225"},

"cpu": {"number of cores": "24"}, "power supply": {"power state":

"Ol’l"}}

}

107

HCLTech

OpenStack Setup

o Secrets
o Retrieve the List of Secrets that are Associated with the OpenStack Setup
o OpenStack Configuration
o Retrieve the list of Configurations Associated with the OpenStack Setup
o Release Mapping Information
Secrets

Retrieve the List of Secrets that are Associated with the OpenStack Setup

You can retrieve the set of secret passwords that are associated with the OpenStack setup using the
preceding api. This gives the list of secrets for each service in OpenStack.

Resource URI
Verb | URI
GET | /vl1l/se
crets
Example
CURL Command:

curl -i -X GET \-H "Accept: application/json" \-u admin:<Password> \--cacert /<mercury-ca.crt path>
\"https://<Pod |p:8445>/v1/secrets"
JSON Request

GET /vl/secrets
Accept: application/json

JSON Response

200 OK
Content-Type: application/json
{

"HEAT KEYSTONE PASSWORD": "xxxx", "CINDER KEYSTONE PASSWORD":
"Xxxxx",
"RABBITMQ PASSWORD": "xxxxx"

}

108

HCLTech

OpenStack Configuration
Retrieve the List of Configurations Associated with the OpenStack Setup

You can retrieve the set of OpenStack configurations associated with the OpenStack setup using the
preceding api. This gives the current settings of different configurations such as verbose logging and
debug logging for different OpenStack services.

Verb ' URI
GET /vl/secrets

JSON Request

GET /vl/openstack config Accept: application/json

CURL Command

curl-i -X GET \-H "Content-Type: application/json" \-H "Accept: application/json" \-u
admin:<Password>\cacert/<mercuryca.crtpath>\https://<PodIP>:8445/v1/openstack_config

JSON Response

200 OK
Content-Type: application/json

{
"CINDER DEBUG LOGGING": false, "KEYSTONE DEBUG LOGGING": false,

"NOVA VERBOSE LOGGING": true
}

Release Mapping Information

This api is used to see the list of features included and list of options which can be reconfigured in the
Openstack Setup.

Retrieve the Release Mapping information

Resource URI

Verb | URI
GET /vl/releasemapping

CURL Command:

curl -i -X GET \-H "Accept: application/json" \-u admin:<Password> \--cacert /<mercury-ca.crt
path>\https://<Pod IP>:8445/v1/releasemapping

109

HCLTech

JSON Request

GET /vl/releasemapping Accept: application/json

JSON Response

200 OK

Content-Type: application/json [
{

"SWIFTSTACK" : {

"feature status": true,

1y

"desc": "swift stack feature"

110

HCLTech

Update

¢ Start an Update Process

¢ Roll Back an Update

¢ Commit an Update

Retrieve the Details of an Update
Note: HVIM 6.0 release not supporting Update hence we are not updating the documentation
Start an Update Process

Resource URI

Verb | URI
POST | /v1/update

Parameters:
« fileupload - tar file to be uploaded.
+ filename - Name of the uploaded file.

Example
JSON Request

curl -sS -X POST --form "fileupload=Q@Test/installer.good.tgz" —--
form "filename=installer.good.tgz" https://10.10.10.8445/v1/update

! This curl request is done as a form request.

111

HCLTech

JSON Response
200 OK

Content-Type: application/Jjson

{

"update logs": "logurl", "update status": "UpdateSuccess",

"update filename": "installer-4579.tgz", "created at": "2016-07-
10T18:33:52.698656", "updated at": "2016-07-10T18:54:56.885083"

}

409 CONFLICT

Content-Type: application/json
{

"debuginfo": null "faultcode": "Client" "faultstring": "Uploaded
file is not in tar format"

}

Roll Back an Update

Resource URI
Verb | URI
PUT | /vl/up
date
Example
JSON Request

PUT /vl/update

Accept: application/json
{

"action":"rollback"

}
JSON Response

200 OK

Content-Type: application/json
{

"update logs": "logurl", "update status": "ToRollback",
"update filename": "installer-4579.tgz", "created at": "2016-07-
10T18:33:52.698656", "updated at": "2016-07-10T18:54:56.885083"

}

Commit an Update

Resource URI
Verb URI
PUT /v1/update

112

HCLTech

Example: JSON Request

PUT /vl1/update

Accept: application/json
{

"action":"commit"

}

JSON Response

200 OK

Content-Type: application/json
{

"update logs": "logurl", "update status":

"update filename": "installer-4579.tgz",

"UpdateSuccess",

"created at": "2016-07-10T18:33:52.698656", "updated at": "2016-07-

10T18:54:56.885083"
}

Retrieve the Details of an Update
Resource URI

Verb URI

GET /v1/update

Example
JSON Request
GET /vl1/update
Accept: application/json
JSON Response
200 OK
Content-Type: application/json
{
"update_logs": "logurl",
"update_status": "UpdateSuccess",
"update_filename": "installer-4579.tgz",
"created_at": "2016-07-10T18:33:52.698656",
"updated_at": "2016-07-10T18:54:56.885083"

113

HCLTech

Install Resource

Retrieve Information About a Particular Node
Resource URI

Verb URI
GET /v1l/nodes{id}

Property:

id—The ID of the node that you want to retrieve.
Example

JSON Request

POST /vl/nodes
Accept: application/js

JSON Response

200 OK

Content-Type: application/json

{

"status": "Active",

"uuid": "456",

"setupdata": "123",

"node data": "{

"rack info": { "rack id": "RackA"

br

"cimc _info": { "cimc ip": "10.10.10.10"
by

"management ip": "7.7.7.10"

b

"updated at": null, "mtype": "compute",
"install": "345", "install logs": "logurl",
"created at":"2016-0710T06:17:03.761152",
"name": " compute-1"

}

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"
"faultstring": "Node doesn't exists"

}

114

HCLTech

Install Resource

e Return a List of Installation
e Create an Installation

o Retrieve the Installation

e Stop the Installation

REST wrapper for install provides methods for starting, stopping, and viewing the status of the
installation process.

Return a List of Installation

Resource URI

Verb URI
GET /v1l/install
Example

JSON Request

GET /v1l/install
Accept: application/json

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Rest APl admin user password> -H
'‘Accept: application/json' -H 'User-Agent: python-ciscovimclient' --cacert "<mercury-ca.crt file path>"
https://<br_api>:8445/v1/install

JSON Response

200 OK
Content-Type: application/json
{"installs": [{

"ceph": "Skipped",

"uuid": "123",

"setupdata": "345",

"vmtpresult": "{

"status": "PASS",

"EXT NET": []

Py

"baremetal": "Success", "orchestration": "Success",
"validationstatus": "{ "status": "PASS", "Software Validation": [],
"Hardware Validation": []

Py

"currentstatus": "Completed", "validation": "Success", "hostsetup":
"Success", "vmtp": "Skipped"

}]

}

115

HCLTech

Create an Installation

Resource URI
Verb | URI
POST /vl/install

Fresh install HVIM in the pod using below process

1. Upload setupdata file (payload.json) before installation start, take setupdata json file from current
installation

2. Install HVIM in 8 steps process
curl -i -X POST -H 'Content-Type: application/json' -H 'Accept: application/json' -H 'CVIM-API-

Version: 4.0.0' -H 'User-Agent: python-ciscovimclient' -u admin:<Rest APl admin password> --cacert

"mercury-ca.crt file path" -d @payload.json https://<br_api>:8445/setupdata

curl -i -X POST -H "Content-Type: application/json" -H "Accept: application/json" -H "CVIM-API-
Version: 4.0.0" -H "User-Agent: python-ciscovimclient" -u admin:<Rest APl admin password> --
cacert "<mercury-ca.crt certificate path>" -d '{"setupdata": "<setupdata UUID taken from above

POST method>", "stages": ["validation", "bootstrap", "runtimevalidation", "baremetal”, "orchestration",

"hostsetup”, "ceph", "vmtp"]}' https://<br_api>:8445/v1/install

Example
JSON Request
201 CREATED

Content-Type: application/json

{
"ceph": "Skipped",
"uuid": "123",

"setupdata'": "345",

"vmtpresult": "{

"status": "PASS",

"EXT NET": []

Py

"baremetal": "Success", "orchestration": "Success",
"validationstatus": "{ "status": "PASS", "Software Validation": [],

"Hardware Validation": []
Py
"currentstatus": "Completed", "validation": "Success", "hostsetup":
"Success", "vmtp": "Skipped"

}
409 CONFLICT

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"
"faultstring": "Install already exists"

}

116

ClLTech

JSON Response
GET /vl/install Accept: application/js
{
"setupdata": "123", "stages": ["validation", "bootstrap",
"runtimevalidation", "baremetal", "orchestration", "hostsetup",
AL ceph " ’ "thp "
1
}

Retrieve the Installation

Resource URI

Verb URI
GET /v1l/install/{id}
Property:

id—The ID of the installation that you want to retrieve.

Example
JSON Request

GET /v1/install/345
Accept: application/js
curl -i -X GET -H "Content-Type: application/json" -u admin:<Rest APl admin password> -H "Accept:

application/json" --cacert "<mercury-ca.crt file path>" https://<br_api>:8445/v1/install/<UUID of the install GET
request>

JSON Response

117

HCLTech

200 OK

Content-Type: application/json
{

"ceph": "Skipped",

"uuid": "123",

"setupdata": "345",

"vmtpresult": "{

"status": "PASS",

"EXT NET": []

}"I

"baremetal": "Success", "orchestration": "Success",
"validationstatus": "{ "status": "PASS", "Software Validation": [],

"Hardware Validation": []

"y

"currentstatus": "Completed", "validation": "Success", "hostsetup":
"Success", "vmtp": "Skipped"

}
404 NOT FOUND
Content-Type: application/json

{
"debuginfo": null "faultcode": "Client"

"faultstring": "Install doesn't exists"
)

Stop the Installation

Resource URI
Verb URI

DELET /v1/install/{id}
E

Property:
id—The ID of the installation that you want to stop.

Example JSON Request

DELETE /v1/install/345
Accept: application/js

curl -i -X DELETE -H "Content-Type: application/json" -H "Accept: application/json" -H "User-
Agent: python-ciscovimclient" -u admin:<Rest APl admin password> --cacert "<mercury-ca.crt file
path>" https://<br_api>:8445/v1/install/<install UUID>

JSON Response
204 NO CONTENT
Content-Type: application/json
404 NOT FOUND
Content-Type: application/json
{

118

HCLTech

"debuginfo": null "faultcode": "Client" "faultstring": "Install doesn't
exists"

}

119

HCLTech

Nodes and Replace Controller

¢ Nodes
Getting a List of Nodes
o Add New Nodes

O

o Retrieve Information About a Particular Node
o Remove a Node
o Health of the Management Node
e Replace a Controller
Nodes
Getting a List of Nodes

Resource URI
Verb URI
GET /v1/nodes

Example
JSON Request

Get /vl/nodes
Accept: application/js

curl -i -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' -H 'CVIM-API-
Version: 4.0.0' -H 'User-Agent: python-ciscovimclient' -u admin:<Rest APl admin password> --cacert
"<mercury-ca.crt path>" https://<br_api>:8445/nodes

JSON Response

120

HCLTech

200 OK
Content-Type: application/json
{

"nodes": [[

"status": "Active",

"uuid": "456",

"setupdata": "123",

"node data": "{

"rack info": { "rack id": "RackA"

}I

"cimc info": {

"cimc ip": "10.10.10.10"

}I

"management ip": "7.7.7.10"

}"I

"updated at": null, "mtype": "compute",
"install": "345", "install logs": "logurl",
"created at":"2016-0710T06:17:03.761152",
"name": " compute-1"

}
]
}
Add New Nodes

The nodes are in compute or block_storage type. Before adding the nodes to the system, the name
of the nodes and other necessary information like cimc_ip and rackid must be updated in the
setupdata object. If the setupdata object is not updated, the post call does not allow you to add the
node.

Verb URI

Steps to add node into the cluster

1. Get setup json response from GET request, convert or beautify the json string, save it in
payload.json file

2. Update modified setup_data.yaml file using PUT request
3. Send remove request using POST request
Resource URI
/v1/no

POST | des

PUT setupdata/uuid

121

HCLTech

Example
JSON Request

POST /vl1/nodes
Accept: application/js
{

"name" : "compute-5"

}

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-
Agent: python-ciscovimclient" -u admin:<Rest APl admin passwd> --cacert "mercury-ca.crt path" -d
@payload.json https://<br_api>:8445/setupdata/<setup data uuid>

curl -1 -X POST -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent: python-c
iscovimclient" -u admin: --cacert <mercury-ca.crt> -d '{"name": "<Node name to be removed",
"skip_vmtp": false}' https://:8445/nodes/add compute

JSON Response

201 CREATED
Content-Type: application/json
{

"status": "ToAdd",

"uuid": "456",

"setupdata": "123",

"node data": "{

"rack info": { "rack id": "RackA"

by

"cimc _info": { "cimc ip": "10.10.10.10"
by

"management ip": "7.7.7.10"

b

"updated at": null, "mtype": "compute",
"install": "345", "install logs": "logurl",
"created at":"2016-0710T06:17:03.761152",
"name": " compute-1"

}

Remove a Node

The node to be deleted must be removed from the setupdata object. Once the setupdata
object is updated, you can safely delete the node. The node object cannot be deleted until it calls the
remote node backend and succeeds.

Resource URI
Verb URI
DELETE /vl1/nodes{id}

Property:
122

https://:8445/nodes/add_compute

HCLTech

id—The ID of the node that you want to remove. Example

Follow below procedure to remove node from the cluster using rest api call

Get setupdata UUID from install API

Get setupdata with the collected setupdata uuid from above install APIL.

Get list of nodes already deployed in the pod

Update the modified setupdata

Delete node from the podcurl -g -1 -X GET -H 'Content-Type: application/json' -u admin: -H 'Accept:
application/json' -H 'User-Agent: python-ciscovimclient' --cacert "<mercury-ca.crt file path>"
https://:8445/install

Nk W=

curl -g -1 -X GET -H 'Content-Type: application/json' -u admin: -H 'Accept: application/json' -H "User-
Agent: python-ciscovimclient' --cacert "<mercury-ca.crt file path>" https://:8445/setupdata/

curl -g -1 -X GET -H 'Content-Type: application/json' -u admin: -H 'Accept: application/json' -H "User-
Agent: python-ciscovimclient' --cacert "<mercury-ca.crt file path>" https://:8445/nodes

curl -1 -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent:
python-ciscovimclient" -u admin: --cacert "<mercury-ca.crt file path>" -d @setup_data compl-
remove.json https://:8445/setupdata/

JSON Request
DELETE /vl/nodes/456 Accept: application/js
curl -g -1 -X DELETE -H 'Content-Type: application/json' -u admin: -H 'Accept: application/json' -H 'User-

Agent: python-ciscovimclient' --cacert "<mercury-ca.crt file path>" -d '{"force op": false, "name": ""}'
https://:8445/nodes/remove _compute

JSON Response

204 ACCEPTED

Content-Type: application/json

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"
"faultstring": "Node doesn't exists"

}

To clear the database and delete the entries in the nodes, the delete APl is called with special
parameters that are passed along with the delete request. The JSON parameters are in the following
format.

JSON Request

123

https://:8445/install
https://:8445/setupdata/
https://:8445/nodes
https://:8445/setupdata/
https://:8445/nodes/remove_compute

ClTech

DELETE /vl/nodes/456 Accept: application/js
{

"clear db entry":"True"\

}

JSON Response

204 ACCEPTED
Content-Type: application/json

404 NOT FOUND
Content-Type: application/json

{
"debuginfo": null "faultcode": "Client"

"faultstring": "Node doesn't exists"

}

Health of the Management Node

This APl is used to retrieve the health of the management node. It checks various parameters such
as partitions, space and so on. Resource URI

Verb URI
GET /vl1/health

! Thisis done only if the node is deleted from the REST API database. The failure reason of the node must
be rectified manually apart from the API. True is a string and not a boolean in the preceding line.

Example
JSON Request

GET /vl1/health
Accept: application/json

curl -i -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' -H 'CVIM-API-Version: 4.0.0' -H 'User-
Agent: python-ciscovimclient' -u admin:<Rest APl admin password> --cacert "<mercury-ca.crt file path>"
https://<br_api>:8445/v1/health

124

HCLTech

JSON Response

200 OK
Content-Type: application/json
{

"status": "PASS", "pod status": { "color": "BLUE",
"version": "<VERSION NO.>"

}o

"insight version": "<VERSION NO.>"

}

Color signifies the health of the pod for Insight:
¢ Grey signifies that no installation is kicked off on the pod.
e Green signifies that everything is in Good state and cloud installation is active.
¢ Blue signifies that some operation is running on the pod.

¢ Red signifies that the pod is in critical state, and you might need TAC support to recover the
pod.

¢ Amber indicates a warning if a pod management (Add/Remove/Replace) operation failed.
Replace a Controller

Resource URI

Verb URI
PUT /v1l/nodes{id}
Property:

id—The ID of the controller that you want to replace.

Example
JSON Request

PUT /vl/nodes/456 Accept: application/js

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json" -H "User-Agent: python-
ciscovimclient" -u admin: --cacert "<mercury-ca.crt file path>" -d '{"name": "", "status": "ToReplace",
"force op": false, "skip vmtp": false}' https://:8445/nodes/

JSON Response
200 OK
Content-Type: application/json

125

https://:8445/nodes/

HCLTech

404 NOT FOUND

Content-Type: application/Jjson

{

"debuginfo": null "faultcode": "Client"
"faultstring": "Node doesn't exists"

}

126

HCLTech

Setupdata and Offline Validation

» Setupdata

e Retrieving the Setupdata

e Creating Setupdata

¢ Retrieving a Single Setupdata

e Updating a Setupdata

e Deleting a Setupdata
. Offline validation

e Create an Offline Validation Operation

¢ Retrieve the Results of Offline Validation
Setupdata

REST wrapper for setupdata. Provides methods for listing, creating, modifying, and deleting
setupdata.

Retrieving the Setupdata

Resource URI

Verb URI
GET /v1/setupdata
Example

Curl Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<rest api password> -H 'Accept:
application/json' -H 'User-Agent: python-ciscovimclient' --cacert "C:\certificates\<mercury-ca.crt
path>" https://<br_api ip>:8445/setupdata
JSON Request

GET /vl/setupdata
Accept: application/json

127

HCLTech

JSON Response

200 OK
Content-Type: application/json
{"setupdatas": [{

"status": "Active",
"name" :"GG34",
"uyuid": "123"
"meta": {

"user" :"root"

S r
"jsondata": {

Creating Setupdata

Resource URI
Verb URI
POST | /v1/setupdata

Example

Curl Command:

curl -g -i -X POST -H "Content-Type: application/json" -u admin:<Rest Api password> -H
"Accept: application/json" --cacert 'C:\certificates\<mercury-ca.crt path>' "name": "GG34", "uuid":

"uuid", "meta": {"user": "root"} -d "{\"jsondata\": " https://<br_api ip>:8445/v1/offlinevalidation
JSON Request

POST /vl/setupdata Accept: application/Jjson
{ "name":"GG34",

"yuid": "123"

"meta": {

"user":"root"

b

"jsondata": {

JSON Response

128

HCLTech

201 OK

Content-Type: application/json
{

"status": "Active",

"name" :"GG34",

"yuid": "123"

"meta": {

"user":"root"

S r
"jsondata": {

.......

400 Bad Request
Content-Type: application/json
{

"debuginfo": null "faultcode":"Client" "faultstring": "Error"

}
409 CONFLICT

Content-Type: application/json
{

"debuginfo": null "faultcode": "Client" "faultstring": "Error"

}

Retrieving a Single Setupdata

Resource URI
Verb URI
GET /vl/setupdata/ (id)

Property:

id—The ID of the setupdata that you want to retrieve. Example
JSON Request
GET /vl/setupdata/123 Accept: application/json

Curl Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Rest Api Password> -H 'Accept: application/json' -H
'User-Agent: python-ciscovimclient' --cacert 'C:\certificates\illtb3\<mercury-ca.crt path>' https://<br_api
ip>:8445/setupdata/<uuid>

JSON Response

129

HCLTech

200 OK

Content-Type: application/json
{

"status": "Active",

"name" :"GG34",

"yuid": "123"

"meta": {

"user":"root"

bo

"jsondata": {

404 NOT FOUND
Content-Type: application/json
{

"debuginfo": null "faultcode": "Client"
"faultstring": "Setupdata could not be found."
}

Updating a Setupdata

Resource URI
Verb URI
PUT /vl/setupdata/ (id)

Property:
id—The ID of the setupdata that you want to update.

Example

JSON Request

PUT /vl/setupdata/123 Accept: application/json

JSON Response

130

HCLTech

200 OK
Content-Type: application/Jjson
{

"status": "Active",
"name" :"GG34",
"yuid": "123"
"meta": {
"user":"root"

by
"jsondata" : {

404 NOT FOUND

Content-Type: application/json

{

"debuginfo": null "faultcode": "Client"
"faultstring": "Setupdata could not be found."
}

Deleting a Setupdata

Resource URI

Verb URI
DELETE /v1/setupdata/ (id)
Property:

id—The ID of the setupdata that you want to delete. Example

JSON Request

DELETE /vl/setupdata/123 Accept: application/json

JSON Response
204 NO CONTENT Returned on success
404 NOT FOUND
Content-Type: application/json
{
"debuginfo": null "faultcode": "Client"
"faultstring": "Setupdata could not be found."
}
400 BAD REQUEST
Content-Type: application/json

131

HCLTech

{

"debuginfo": null "faultcode": "Client"
"faultstring": "Setupdata cannot be deleted when it is being used by an
installation"

}

Offline Validation

REST wrapper does the offline validation of setupdata. Rest wrapper does only the software
Validation of the input setupdata.

Create an Offline Validation Operation

Resource URI
Verb URI
POST /vl/offlinevalidation

Example
JSON Request

POST /vl/offlinevalidation
Accept: application/json
{

"jsondata": "."

curl -g -i -X POST -H "Content-Type: application/json" -u admin: -H "Accept: application/json" --cacert " -d "{"jsondata":
S(cat setup_data.json)}" https://:8445/v1/offlinevalidation

JSON Response

201 CREATED

Content-Type: application/json

{

"status": "NotValidated",

"uuid": "bb42edba-c8b7-4a5c-98b3-1£f384aae2b69", "created at":
"2016-02-03T02:05:28.384274", "updated at": "2016-02-
03T02:05:51.880785",

"jsondata": "{}", "validationstatus": { "status": "PASS",
"Software Validation": [], "Hardware Validation": []

}

}

132

https://:8445/v1/offlinevalidation

HCLTech

201 CREATED WS

Content-Type: application/json

{

"status": "HotValidated",

"uuid": "bhd4Zedba-cBbhT7-4a5c-98b3-1f3RdaaeZbES", "created at":
"2016-02—03T02:05:28.384274", "updated at™: "2016—02-
O3T02:=05:51 .8BB0785",

"J1sondata™: "(]", "wvalidationstatus": mn

Retrieve the Results of Offline Validation

Resource URI
Verb URI
GET /vl/offlinevalidation

Property:
id—The ID of the node you want to retrieve.
Example

JSON Request
GET /vl/offlinevalidation/789 Accept: application/json

Curl Command:

curl -g -i -X GET -H 'Content-Type: application/json' -u admin:<Password> -H 'Accept:
application/json' -H 'User-Agent: python-ciscovimclient' --cacert 'C:\certificates\<mercury-ca.crt

path>' https://<br_api ip>:8445/v1/offlinevalidation/<uuid>

JSON Response
200 OK
Content-Type: application/json
{
"status": " ValidationSuccess",

"uuid": "bb42edba-c8b7-4a5c-98b3-1£384aae2b69", "created at":
03T02:05:28.384274", "updated at": "2016-02-03T02:05:51.880785",
"jsondata": "{}", "validationstatus": { "status": "PASS",
"Software Validation": [], "Hardware Validation": []

}
}

133

"2016-02-

HCLTech

Copyrights
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO
CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS
MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY
PRODUCTS.
THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH
IN THE LICENSE AGREEMENT SIGNED BETWEEN THE PARTIES.
NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE
SUPPLIERS ARE PROVIDED “AS IS” WITH ALL
FAULTS. HCLSOFTWARE AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR
TRADE PRACTICE.
IN NO EVENT SHALL HCLSOFTWARE OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL,
CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR
LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF
HCLSOFTWARE OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be
actual addresses and phone numbers. Any examples, command display output, network topology
diagrams, and other figures included in the document are shown for illustrative purposes only. Any use
of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
HCLSOFTWARE Logo is trademark of HCL Technologies Ltd., and/or its affiliates in the U.S. and other
countries.
Third party trademarks mentioned are the property of their respective owners. The use of the word
partner does not imply a partnership relationship between HCLSOFTWARE and any other company.

Copyrights @HCL Technologies Ltd., 2025 All rights reserved.

134

