
Data quality
framework in Snowflake

Summary of the solution framework

Customers can get the following benefits by
using this framework:

• This framework can be used to curate any
 Snowflake table by placing the rules as
 configurations. Hence, the time-to-market would
 be sho� as the developers wouldn’t need to build
 any code. Additionally, this framework can give
 them a jump sta� to quickly customize and
 sho�en the build phase.

• As the developers have to only put the DQ rule
 details to the CONFIG table, no code change is
 involved to cleanse any new data source.

• This framework suppo�s schema evolution.
 Any change in the structure of any existing
 table doesn’t have any impact on the solution
 framework, thus eliminating the need of any
 code change.

• Developers/users don’t need to have expe�ise
 in Snowflake to use this framework. Basic SQL
 knowledge is sufficient to use it.

Business benefits

For some crucial context, let us first
summarize how data quality is ensured
through a pa�icular solution framework.

In a traditional ELT or data warehouse solution,
you first need to ingest data into your staging
area from various source systems and cleanse
them before they can be processed fu�her by
downstream applications. If data quality is
overlooked, data warehouse users will have
inaccurate and incomplete data on their
hands. This translates directly into erroneous
results produced on running analytical queries
on the dataset.

This data quality framework is based on
configurable DQ rules applied to a specific
column or a set of columns of a Snowflake
(staging) table, thus curating the dataset by
eliminating the bad records.

Solution framework overview

A JavaScript-stored procedure is created for each DQ rule mentioned below. When applied to a
column(s) of a table, the procedure inse�s the erroneous records of that table which don’t satisfy the
concerned DQ rule for the said column(s), along with some other metadata. This includes TABLE_NAME,
COL_NAME, INVALID_VALUE, DQ_RULE and ERR_MSG into the DQ_RULE_VALIDATION_RESULTS table.

The Following DQ rules have been created:

RULE_DATE: Used to check the date value conforming to the pa�ern supplied

RULE_DECIMAL: Used to check a decimal value

RULE_INTEGER: Used to check an integer value

RULE_LENGTH: Used to check whether the length of a field is within the supplied value

RULE_NOT_NULL: Used to check whether a field contains NULL value

RULE_REGEX: Used to check whether a field conforms to the supplied regex pa�ern

RULE_SQL_FILTER: Used to check whether a record satisfies a SQL predicate

RULE_UNIQUE: Used to validate whether a field contains unique values

RULE_VALID_VALUES: Used to check whether a field contains values specified in the supplied
value array

A Wrapper-stored procedure, DQ_RULE_VALIDATION, is created to call the RULE SPs mentioned
above based upon the entries made in a configuration table named DQ_RULE_CONFIG for a
concerned SOURCE TABLE where APPLY_RULE flag is set to TRUE.

A brief technical overview

Conclusion

This framework can be extended to include more complex cleansing rules as per the requirement
and the same architecture can still be seamlessly used. The DQ_RULE_VALIDATION_RESULTS
table can be used to create dashboards in Snowsight or any other BI tool to capture error record
summary at the table level, DQ rule level, record level or at any other suitable granularity and to
capture other KPIs as well.

The Wrapper SP can be scheduled in task for a full-blown Snowflake solution or the framework
can be integrated with any ETL/ELT tools like Talend, Informatica, dbt, etc. The objective of this
write-up is to help create a DQ framework so that the same can be leveraged to cleanse any
source system feed with minimal/no code changes, thereby reducing the time-to-market.

DQ framework features

The DQ_RULE_CONFIG table
will hold the rule mapping for
a table including “rule name”,
“rule parameter” and “apply
rule flag”.

All the validated records can
optionally be loaded into a
CLEANSED table for
downstream processing. The
PARAM_CLEANSE_RECORD input
parameter of the Wrapper procedure
is used to determine the same.

Adding or removing rules on a
dataset doesn’t require any code
changes. Only CONFIG table
entries are required to be
inse�ed/updated

If any DQ rule for a table
is to be skipped, only
APPLY_RULE flag should
be set to FALSE for
that entry.

A wrapper-stored procedure
is created to call the DQ rule
procedures based upon the
entries made in the
DQ_RULE_CONFIG table
for a table to be validated.

1

32 4

5

hcltech.comHCLTech is a global technology company, home to 219,000+ people across
54 countries, delivering industry-leading capabilities centered around digital,
engineering and cloud, powered by a broad po�folio of technology services
and products. We work with clients across all major ve�icals, providing
industry solutions for Financial Services, Manufacturing, Life Sciences and
Healthcare, Technology and Services, Telecom and Media, Retail and CPG,
and Public Services. Consolidated revenues as of 12 months ending
September 2022 totaled $12.1 billion. To learn how we can supercharge
progress for you, visit hcltech.com.

