
Homomorphic encryption:
Exploring technology trends
and future approach

Introduction

Section 1: Technological advances in homomorphic
encryption

Homomorphic encryption represents a groundbreaking advancement in
cryptography, enabling computations on encrypted data without
decryption. This transformative capability holds immense oppo�unity to
enhance privacy, security and data confidentiality across various domains.
By allowing computations to be pe�ormed directly on encrypted data,
homomorphic encryption mitigates the risks associated with data
exposure during processing and transmission.

In this white paper, we delve into the technology behind homomorphic
encryption, its current state-of-the-a� implementations and the potential
it holds for future experimentation and innovation.

Section 1: Technological advances in homomorphic encryption

In the first section, we describe the technological advances that have
propelled homomorphic encryption forward. We provide a comprehensive
overview of the historical timeline, tracing the evolution of homomorphic
encryption from its theoretical foundations to its practical applications
today. We discuss the availability and features of popular homomorphic
encryption libraries.

Section 2: Experiments with open-source homomorphic
encryption library

The second section of the paper focuses on practical experimentation
with homomorphic encryption using open-source libraries. With the help
of hands-on experiments, we demonstrate the efficiency of the
encryption-decryption process using Fully Homomorphic Encryption (FHE)
in terms of time taken and storage consumed.

Section 3: The future of homomorphic encryption

In the final section, we turn our a�ention to the future of homomorphic
encryption and the ecosystem surrounding it. We discuss ongoing
research effo�s aimed at advancing homomorphic encryption techniques
and addressing challenges such as pe�ormance optimization, security
enhancements and standardization. Emerging trends and applications of
homomorphic encryption in domains such as healthcare, finance, cloud
computing and machine learning are explored, along with the role of
industry collaborations, regulatory frameworks and community
engagement in shaping the future landscape of homomorphic encryption.

In this section, we cover the basic definition of homomorphic encryption,
its types, the encryption schemes associated with FHE and the chronology
of technological advances in this area.

What is homomorphic encryption

Homomorphic encryption is a cryptographic technique enabling
computations on encrypted data without decrypting it first. The
fundamental idea behind homomorphic encryption is to design
encryption schemes that suppo� addition and multiplication on
ciphe�exts.

2Homomorphic encryption: Exploring technology
trends and future approach

The resultant of this operation, when decrypted, yields results equivalent
to pe�orming the same operations on the plaintexts. Hence, facilitating a
user to pe�orm operations on the data stored on the cloud without even
decrypting it, as shown in the figure below.

There are various types of homomorphic encryption depending on the
diverse needs and requirements of different applications and scenarios -

Pa�ially Homomorphic Encryption (PHE):

PHE schemes suppo� only one type of homomorphic operation, either
addition or multiplication, but not both. PHE schemes are relatively simple
and computationally efficient when compared to more advanced
homomorphic encryption schemes, making them suitable for ce�ain
applications where simplicity and efficiency are prioritized over
functionality. One such example includes the RSA cryptosystem, which
suppo�s homomorphic multiplication.

Somewhat Homomorphic Encryption (SHE):

SHE schemes suppo� a limited number of both addition and
multiplication operations on encrypted data but have constraints on the
depth of computations due to noise accumulation. It strikes a balance
between functionality and efficiency, suppo�ing a limited set of
computations while still preserving security. While SHE cannot suppo�
arbitrary computations like FHE, it is often more practical and efficient for
applications that require basic computations on encrypted data. Some of
the examples are Paillier cryptosystem and Benaloh cryptosystem.

Fully Homomorphic Encryption (FHE):

FHE schemes enable arbitrary computations on encrypted data, allowing
both addition and multiplication operations, as well as more complex
computations. These schemes typically involve bootstrapping techniques
to refresh ciphe�exts and manage noise, enabling deeper computations.
Examples of such schemes include the original Gentry FHE scheme and its
variants, such as BGV and BFV. Despite being the most advanced and
versatile form of homomorphic encryption, offering maximum
functionality and flexibility, FHE schemes tend to be more computationally
intensive and have higher overhead compared to PHE and SHE, making
them less practical for some applications where efficiency is critical.

Figure 1 Homomorphic encryption example

3

Third-pa�y cloud
service provider Data owner

Homomorphic
encryption-based

data processing platform

Homomorphic encryption: Exploring technology
trends and future approach

Since FHE is the most desirable and secure encryption algorithm, this
white paper will focus on FHE implementation only. Hencefo�h, in this
paper, terms like homomorphic encryption and FHE will be used
interchangeably. Depending on the mathematical principles and data
types that are suppo�ed, there are three prominent encryption
techniques for FHE implementation -

In summary, BGV, BFV and CKKS are all FHE schemes with different
underlying mathematical principles and optimizations. BGV and BFV
utilizes la�ice-based cryptography, while CKKS is tailored for real and
complex number computations. Each scheme has its own strengths and
limitations, making them suitable for different use cases and pe�ormance
requirements.

Here's an overview of each, including their underlying mathematical
principles and differences.

Brakerski-Gentry-Vaikuntanathan (BGV):

The BGV scheme is one of the first FHE schemes proposed and is formed
by la�ice-based cryptography, pa�icularly the Learning with Errors (LWE)
problem. It leverages bootstrapping to pe�orm FHE, allowing arbitrary
computations on encrypted data. It provides strong security guarantees,
but can be computationally expensive, especially for complex operations
and large ciphe�ext sizes.

Brakerski-Fan-Vercauteren (BFV):

Similar to BGV, the BFV scheme is based on la�ice-based cryptography,
specifically the Ring Learning with Errors (Ring-LWE) problem.
Fu�hermore, it suppo�s fully homomorphic encryption and employs
e-modulus switching and noise management to improve efficiency. BFV
builds upon BGV by introducing optimizations to reduce the
computational overhead associated with homomorphic operations,
making it more practical for ce�ain applications like text manipulations.

Cheon-Kim-Kim-Song (CKKS):

The CKKS scheme is designed specifically for homomorphic encryption of
real and complex numbers. It is based on the Approximate GCD problem
over rings of polynomials and leverages approximate homomorphic
encryption and modulus switching techniques. CKKS is tailored for
applications that involve computations on real or complex numbers, such
as machine learning and signal processing. It suppo�s approximate
computations with floating-point numbers, facilitating more efficient and
accurate operations on encrypted data compared to schemes designed
for integer arithmetic.

Brakerski-Gentry-Vaikuntanathan (BGV).

Brakerski-Fan-Vercauteren (BFV).

Cheon-Kim-Kim-Song (CKKS) schemes.

4Homomorphic encryption: Exploring technology
trends and future approach

Homomorphic encryption – Chronology

The concept of homomorphic encryption was first introduced in the 1970s,
but significant advancements in recent years have made it more practical
and feasible for real-world applications. Here's a simplified timeline of key
developments in the field of homomorphic encryption:

1978: Rivest, Adleman and De�ouzos propose the RSA cryptosystem,
laying the basis for modern public-key cryptography. While not strictly
homomorphic, RSA is pa�ially homomorphic with respect to
multiplication.

1994: Josh Benaloh introduced a cryptosystem based on the difficulty
of computing roots in finite fields, providing a practical example of a
PHE scheme.

1999: Pascal Paillier introduces a probabilistic encryption scheme
based on the difficulty of the decisional composite residuosity problem,
which suppo�s homomorphic addition.

2009: Craig Gentry published his groundbreaking paper ‘A Fully
Homomorphic Encryption Scheme’, outlining the first FHE scheme,
demonstrating theoretical possibility to pe�orm arbitrary computations
on encrypted data without decryption. This work initiates a new era in
cryptography.

2010s: Gentry, Sahai and Waters presented improvements to the
original FHE scheme, making it more practical and efficient.

2011: Brakerski and Vaikuntanathan introduced the first SHE scheme
capable of both addition and multiplication operations, providing a
more efficient alternative to FHE.

2013: Brakerski and Vaikuntanathan devised a bootstrapping technique
for FHE, significantly improving its efficiency and practicality.

2016: The Microsoft Research team released the Simple Encrypted
Arithmetic Library (SEAL), an open-source library for homomorphic
encryption, making it accessible to developers and researchers.

2016: The Microsoft Research team released the Simple Encrypted
Arithmetic Library (SEAL), an open-source library for homomorphic
encryption, making it accessible to developers and researchers.

2017: The PALISADE library is introduced, offering a comprehensive
suite of la�ice-based cryptography tools, including homomorphic
encryption implementations.

2018: The HomomorphicEncryption.org community is established to
promote collaboration and standardization effo�s in the field of
homomorphic encryption.

2019: ISO/IEC WD 18033-8, the International Organization for
Standardization and the International Electrotechnical Commission
initiated an official project to establish FHE standards.

2020: The National Institute of Standards and Technology (NIST)
launched a standardization process for post-quantum cryptography,
including la�ice-based cryptography, which underpins many
homomorphic encryption schemes.

5Homomorphic encryption: Exploring technology
trends and future approach

2021: DARPA initiated the DPRIVE program, aiming to create a hardware
accelerator for FHE computations. This accelerator is expected to
significantly decrease the compute runtime overhead in comparison to
software-based FHE approaches.

2024: Homomorphic encryption remains an active area of research,
with ongoing effo�s to address practical challenges and promote its
adoption in real-world scenarios. The 3rd Annual FHE.org Conference
held on 24 March 2024 in Toronto on FHE.

Open-source library

The advancements in both the logical foundations and the practical
implementation of FHE have been closely inte�wined with the evolution of
technology and the enrichment of open-source libraries. As the
theoretical foundations of FHE have matured, simultaneous effo�s have
been made to translate these advancements into practical
implementations in software libraries. Some of the prominent
open-source libraries for FHE are listed below.

Microsoft Simple Encrypted Arithmetic Library (SEAL):

Developed by Microsoft Research, SEAL is an open-source library for
homomorphic encryption offering implementations of several
homomorphic encryption schemes, including the BFV scheme for fully
homomorphic encryption and the CKKS scheme for approximate
homomorphic encryption. SEAL is designed to be efficient and flexible,
suppo�ing various encryption parameters and optimizations for
pe�ormance.

PALISADE:

PALISADE is an open-source library for la�ice-based cryptography,
including homomorphic encryption. It is developed by researchers from
several institutions. PALISADE provides implementations of various
homomorphic encryption schemes, such as the BGV scheme for fully
homomorphic encryption suppo�ing functionalities like key generation,
encryption, decryption and homomorphic operations, with a focus on
security and pe�ormance.

Homomorphic Encryption Library (HElib):

HElib is a C++ library developed by researchers at IBM to implement the
BGV fully homomorphic encryption scheme, offering tools for key
generation, encryption, decryption and homomorphic operations, along
with optimizations for pe�ormance. HElib is widely used in research and
education for experimenting with homomorphic encryption and
developing applications.

Standardization conso�ium (HESC) libraries:

The HESC is working on standardizing homomorphic encryption and
developing reference implementations of standardized schemes. While
specific libraries may not yet be available, the conso�ium's effo�s aim to
provide standardized APIs and implementations for homomorphic
encryption, promoting interoperability and adoption.

6Homomorphic encryption: Exploring technology
trends and future approach

SEAL-Python:

SEAL-Python is a Python wrapper for Microsoft SEAL, allowing users to
access SEAL's functionalities from Python scripts empowering researchers
and developers to experiment with homomorphic encryption in a Python
environment, leveraging SEAL's features for encrypted computation.

Here is a comparison of the functionality of these libraries:

To suppo� basic functionality in FHE libraries, it's essential to implement
key operations that enable encryption, decryption and homomorphic
computations on encrypted data.

Here are the key functions that each library should ideally suppo�:

Name

HElib IBM Yes Yes No No BGV scheme
with the GHS
optimizations.

Microsoft
SEAL

OpenFHE

Microsoft

Duality Technologies,
Samsung Advanced

Institute of Technology
[kr], Intel, MIT,

University of California,
San Diego and others.

Yes

Yes Yes Yes Yes

Yes Yes No

Developer BGV CKKS BFV DescriptionCKKS
bootstrapping

Successor to
PALISADE.

PALISADE New Jersey Institute
of Technology, Duality

Technologies, Raytheon
BBN Technologies, MIT,
University of California,
San Diego and others.

Figure 2 FHE library comparison

Yes Yes Yes No General-purpose
la�ice

cryptography
library.

Predecessor of
OpenFHE

Key generation: This function generates the public and private keys
used for encryption and decryption of data respectively.

Encryption: The encryption function takes plaintext data and the public
key as input and produces ciphe�ext, which is the encrypted form of
the data which can be used for secure transmission or storage.

Decryption: The decryption function takes ciphe�ext and the private
key as input and produces the original plaintext data. However, only
entities with the correct private key can decrypt the ciphe�ext and
recover the original data.

Addition: Homomorphic encryption schemes that suppo� addition
allow for summation of two ciphe�exts together to pe�orm addition on
the plaintexts they represent. The result is a new ciphe�ext that, when
decrypted, yields the sum of the plaintexts.

Multiplication: Homomorphic encryption schemes that suppo�
multiplication allow multiplying two ciphe�exts together to pe�orm
multiplication on the plaintexts they represent. The result is a new
ciphe�ext that, when decrypted, yields the product of the plaintexts.

Bootstrapping: Bootstrapping is a technique used in fully homomorphic
encryption schemes to reduce noise accumulation in ciphe�exts,
allowing for deeper and more complex computations. It involves
refreshing ciphe�exts without revealing their plaintexts, thereby
maintaining data confidentiality.

7Homomorphic encryption: Exploring technology
trends and future approach

Validity check: This function is used to check the validity of ciphe�exts
or keys to ensure that they have not been tampered with or corrupted.
It is an essential security measure in homomorphic encryption to
prevent a�acks and ensure data integrity.

Section 2: Experimental implementation

This experiment showcases the practical benefits of homomorphic
encryption in real-world cloud computing scenarios. To sta�, the user
encrypts their data using a homomorphic encryption scheme, generating
ciphe�exts. These ciphe�exts are then uploaded to the cloud storage. The
cloud service provider has no access to the plaintext data. When the user
needs to pe�orm operations or computations on the encrypted data, they
do so directly within the cloud environment using homomorphic
encryption. Once the desired operations have been completed on the
encrypted data in the cloud, the user retrieves the resulting ciphe�exts
from the cloud storage. These ciphe�exts are then decrypted locally on
the user's device using the corresponding decryption key.

Here, we have used two approaches: one is a complete homomorphic
encryption approach and the other is a hybrid approach where a
combination of homomorphic and Advanced Encryption Standard (AES)
encryption is used.

Homomorphic encryption experiment setup:

User personal data encryption:

User personal data, in the form of text strings, is encrypted using a
homomorphic encryption scheme before being uploaded to the cloud.

Cloud storage

The encrypted user’s personal data is stored in the cloud which provides a
convenient and scalable platform for storing large volumes of encrypted
data securely.

String search operation:

The string search operation involves searching for a specific substring or
pa�ern within the encrypted data without revealing the plaintext content
to the cloud service provider. The homomorphic encryption scheme used
in this experiment suppo�s the required operations for string search, such
as comparison and pa�ern matching, while preserving the confidentiality
of the encrypted data. The scheme enables the user to pe�orm
computations on the encrypted data, such as searching for specific
substrings, without decrypting the data.

Search result retrieval:

After pe�orming the string search operation on the encrypted data stored
in the cloud, the user receives the encrypted blocks that match the search
criteria. The user can then decrypt the retrieved encrypted blocks locally
using the decryption key to obtain the corresponding plaintext results.

8Homomorphic encryption: Exploring technology
trends and future approach

Figure 3 Experimental setup for homomorphic encryption

Figure 4 Table containing processing time and storage consumption
for experiment one

This experiment is implemented using Helib operating a 11th Gen Intel(R)
Core (TM) i7-1185G7 @ 3.00GHz CPU with 16 GB memory and different size
data set sta�ing from five rows of user data to 50 rows of user data with a
unique key. The table below showcases the result of an experiment that
includes the time taken to encrypt, decrypt and search data in the setup:

Dataset count Homomorphic
encryption
time (ms)

Homomorphic
decryption
time (ms)

String
Search

Actual
database
file size
(bytes)

factors
increased in

size

Homomorphically
encrypted

database file
size (bytes)

5 152 21796 128 146 7792.381137688

25 472 94739 146 571 8634.034930029

50 820 181913 179 1114 8681.569671254

75 1293 288467 137 1647 8750.0814411376

100 1357 381182 149 2193 8733.6519152885

125 1894 376454 89 2749 8691.6523893355

150 1594 458856 120 3319 8627.0528633165

175 1684 547519 139 3892 8575.0333374011

200 1987 580652 106 4441 8582.6538115551

225 2737 742621 181 5021 8535.1642855051

250 2717 753387 120 5598 8502.3847596328

9

Database.
csv

Actual query

Query result

Results

Public key

Public key Public
key

Private key

Homomorphic
decryption

Homomorphic
encryption Homomorphic

string query

Homomorphic
encryption

HE encrypted database

HE encrypted
result

HE encrypted
query

CSV

ServerClient

Untrusted zoneTrusted zone

Homomorphic encryption: Exploring technology
trends and future approach

Observation

Mixed approach experimental setup:

The following are the highlights of the experiment:

String search time and data encryption time:

As the number of datasets increases, the string search time and data
encryption time increase propo�ionally as the number of complex
mathematical operations increases with the size of datasets, which in turn
requires more computational resources and time.

Additionally, string search operations involve iterating through the dataset
to find matching pa�erns or substrings, which becomes more time-con-
suming as the dataset size grows.

Decryption time:

However, the decryption time remains constant, as fetching one dataset
from the cloud for decryption involves a fixed amount of computation
regardless of the dataset size.

Storage requirements:

With the increase in data, the storage requirements increase significantly.
Homomorphic encryption schemes result in enormous ciphe�ext
expansion, where the size of the encrypted data is much larger than the
original plaintext data. Consequently, storing larger volumes of encrypted
data in the cloud requires more storage space, leading to increased
storage costs and potential scalability issues.

The experiment involves encrypting the data using a hybrid approach:

User setup:

Data indices are encrypted using homomorphic encryption, suppo�ing
efficient string search operations while preserving privacy. Other data (e.g.,
text, documents) is encrypted using AES encryption, resulting in AES-en-
crypted blobs. The user generates a key for homomorphic and AES
encryption and creates two encrypted databases.

Cloud setup:

The cloud storage consists of two separate storage systems.

Storage for homomorphically encrypted data indices: This storage
contains the encrypted data indices generated using the homomorphic
encryption scheme.

Storage for AES-encrypted blobs: This storage contains the actual data
(e.g., text documents) encrypted using AES, with each blob associated
with its corresponding index.

10Homomorphic encryption: Exploring technology
trends and future approach

Figure 5 Mixed approach experimental setup

String query processing:

When a user submits a string query, the system pe�orms the following
steps:

The system searches the homomorphically encrypted data indices to find
matching indices for the query. Once matching indices are found, the
system retrieves the corresponding AES-encrypted blobs from the second
storage system based on the indices. And returns the blob.

The retrieved blobs are then decrypted at the user end using the AES
decryption key, allowing the user to get the plaintext data matching the
user's query.

This experiment is implemented using Helib that utilizes 11th Gen Intel(R)
Core (TM) i7-1185G7 @ 3.00GHz CPU with 16 GB memory and different size
data sets sta�ing from five rows of user data to 50 rows of user data with
a unique key. The table below showcases the result of an experiment that
includes the time taken to encrypt, decrypt and search data in the setup:

11

Server

Actual query

Query result
(Index of query)

Results

Actual result

Results

Public key

Public key

Private
key

Public
key

AES key

Homomorphic
string query

Retrieve_n’th_row

HE encrypted
query

HE encrypted
result

Database.csv
CSV

Database.csv
(unique key and

index only)

CSV

Client

AES encrypted
result

AES
encryption

Homomorphic
encryption

Homomorphic
decryption

AES
decryption

AES key

Homomorphic
encryption

HE encrypted
database

AES
encrypted database

AES
encrypted
database

Untrusted zoneTrusted zone

Homomorphic encryption: Exploring technology
trends and future approach

Dataset count Total
Encryption

Time

Total
Decryption

Time

Data
query

time (ms)

Actual
database
file size
(bytes)

Memory
Factor

Total Storage
for Encryption

5 129 106 142 379645 2673.567257

25 252 195 575 1645236 2861.2828793

50 397 125 1119 3226994 2883.8263980

75 464 88 1653 4809042 2909.2885902

100 330 119 2193 6391182 2914.36104190

125 760 109 2750 7973121 2899.32162411

150 621 118 3325 9554991 2873.68153734

175 763 114 3888 11137280 2864.53175036

200 782 93 4459 12718037 2852.22205486

225 1185 107 4992 14301433 2864.87283187

250 1057 160 5588 15882498 2842.25309984

Figure 6 Table containing processing time and storage consumption
for experiment two

Observation

The following are the highlights of the experiment:

Processing requirements:

By using a hybrid encryption approach, the processing requirements for
string search operations are slightly reduced as compared to fully
homomorphic encryption.

Storage requirements:

The storage requirements are significantly reduced with the hybrid
encryption approach. Only the data indices are stored using
homomorphic encryption, leading to smaller ciphe�ext sizes compared to
encrypting the entire dataset. The actual data (blobs) are stored using AES
encryption, which is efficient in terms of storage space.

Query response time:

The query response time was reduced, too, but it was a very small factor.
There was no significant achievement with respect to time.

Conclusion:

The hybrid encryption approach strikes a balance for storage
requirements, even though it’s higher than that required for AES
encryption. It is imperative to pe�orm more optimization to reduce the
query response time and use it in the real world. This application is not
scalable with its current pe�ormance to the real world. Hence, it is
essential to look for accelerators to ensure the security, efficiency and
usability of homomorphic encryption.

12Homomorphic encryption: Exploring technology
trends and future approach

Section 3: Future of FHE and advancements

Homomorphic encryption holds immense promise for revolutionizing
secure computation and data privacy in the digital age. By harnessing the
full potential of homomorphic encryption, we can pave the way for a
future where privacy-preserving technologies empower individuals and
organizations to securely leverage the vast wealth of data at their
disposal.

FHE: A paradigm shift

The paradigm shift enabled by FHE will lead to the emergence of
innovative use cases and applications across various domains, including
secure cloud computing, privacy-preserving analytics, encrypted search,
secure multi-pa�y computation and more. FHE has the potential to
transform how organizations handle and analyze sensitive data, driving
advancements in privacy, security and data-driven decision-making.

From secrecy to computation:

Traditional encryption schemes focus on maintaining the secrecy of data
during storage and transmission. FHE extends this notion by enabling
computation on encrypted data. Instead of merely protecting data from
unauthorized access, FHE enables significant operations and analysis to
be pe�ormed directly on encrypted data without decryption, opening new
possibilities for secure computation.

Privacy-preserving outsourcing:

FHE enables secure outsourcing of computations to untrusted third
pa�ies, such as cloud service providers, without compromising data
privacy. This paradigm shift allows organizations to leverage external
computing resources while maintaining control over sensitive data,
addressing concerns about data exposure and unauthorized access.

Shift in trust model:

FHE challenges the traditional trust model by allowing computations to
be pe�ormed on encrypted data by potentially untrusted entities. Instead
of relying solely on the trustwo�hiness of data processors, FHE shifts the
focus to the security prope�ies of the encryption scheme itself, enabling
secure computation even in adversarial environments.

Privacy-enhanced collaborative computing:

FHE facilitates secure collaboration and data sharing among multiple
pa�ies by enabling computations on encrypted data from different
sources. This paradigm shift enables collaborative analysis without
sharing raw data, addressing privacy concerns and regulatory
requirements while fostering innovation and knowledge sharing across
organizational boundaries.

Privacy-first data analytics:

FHE enables privacy-first data analytics by allowing computations to be
pe�ormed directly on encrypted data. This paradigm shift empowers
organizations to extract valuable insights and knowledge from sensitive
datasets while preserving individual privacy rights and complying with
data protection regulations.

13Homomorphic encryption: Exploring technology
trends and future approach

New possibilities for secure ML:

FHE opens new possibilities for secure machine learning by allowing
models to be trained on encrypted data without exposing the raw data to
the model training process. This paradigm shift enables privacy-preserv-
ing machine learning applications in healthcare, finance and other
domains where data confidentiality is paramount.

Innovative use cases and applications:

Overall, the advent of FHE represents a fundamental shift in how we
approach secure computation and data privacy, unlocking new
oppo�unities for innovation and collaboration while ensuring the
confidentiality and integrity of sensitive information in an increasingly
interconnected and data-driven world.

FHE holds immense promise for enabling secure computation on
encrypted data, but it also faces several roadblocks that have hindered its
widespread adoption. Some of the key challenges associated with FHE
include:

FHE Roadblocks:

Computational complexity: FHE schemes typically involve complex
mathematical operations, resulting in high computational overhead.
Pe�orming homomorphic operations on encrypted data can be orders
of magnitude slower than equivalent operations on plaintext data.

Large ciphe�ext size: Homomorphic encryption often results in
ciphe�ext expansion, where the size of the encrypted data is much
larger than the original plaintext. This increases storage requirements
and communication overhead, pa�icularly for large datasets.

Noise accumulation: FHE schemes are susceptible to noise
accumulation during homomorphic operations, which can degrade the
quality of the encrypted data and affect the accuracy of computations.
Managing and reducing noise while preserving data privacy is a
significant challenge.

Limited functionality: While FHE enables arbitrary computations on
encrypted data, there are practical limitations on the types of
operations and computations that can be efficiently pe�ormed. Ce�ain
operations, such as division and comparison, are pa�icularly
challenging to suppo� in FHE schemes.

Key management and distribution: FHE requires the generation and
management of encryption keys, including public and private keys,
which adds complexity to key management and distribution processes.
Securely distributing and protecting keys while ensuring efficient
access control is a non-trivial task.

Standardization and interoperability: Lack of standardized FHE
schemes and interoperable implementations hinders collaboration and
adoption across different platforms and environments. Standardization
effo�s are essential for promoting interoperability and ensuring
compatibility between FHE implementations.

14Homomorphic encryption: Exploring technology
trends and future approach

Current trends and
approach
To overcome these hurdles, the industry is actively pursuing various
research and development effo�s, including:

Overall, addressing the roadblocks associated with FHE requires a
conce�ed effo� from researchers, industry stakeholders and
standardization bodies. FHE is the future. By advancing algorithmic
techniques, optimizing parameters, exploring hardware acceleration and
promoting standardization, the industry aims to overcome these
challenges and unlock the full potential of FHE for secure and
privacy-preserving computation on encrypted data. Once these
roadblocks are cleared, FHE will disrupt the traditional cryptographic
mechanisms.

Algorithmic improvements: Researchers are continuously developing
more efficient algorithms and techniques to reduce the computational
complexity of FHE schemes and improve their pe�ormance. This
includes optimizing homomorphic operations, minimizing noise
accumulation and enhancing encryption and decryption algorithms.

Parameter selection and optimization: Selecting appropriate
encryption parameters and optimizing scheme parameters are critical
for achieving be�er pe�ormance and security in FHE implementations.
Parameter selection techniques and optimization strategies aim to
strike a balance between pe�ormance, security and functionality.

Hardware acceleration: Hardware acceleration techniques, such as
specialized cryptographic processors (e.g., FPGA, ASIC), are being
explored to speed up homomorphic computations and reduce latency.
Hardware-based solutions can significantly improve the efficiency of
FHE implementations for specific applications and use cases.

Hybrid encryption approaches: Hybrid encryption approaches,
combining FHE with other encryption techniques like symmetric-key
encryption (e.g., AES), aim to leverage the benefits of both schemes
while mitigating their respective limitations. By encrypting only ce�ain
pa�s of the data using FHE, hybrid approaches reduce computational
overhead and storage requirements.

Standardization effo�s: Industry conso�ia and standardization bodies
are working towards developing common standards and protocols for
FHE, facilitating interoperability and adoption across different
platforms and applications. Standardization effo�s promote
collaboration, interoperability and compatibility among FHE
implementations.

15Homomorphic encryption: Exploring technology
trends and future approach

References
Gentry, C. (2009). A Fully Homomorphic Encryption Scheme.

Brakerski, Z., & Vaikuntanathan, V. (2011). Fully Homomorphic Encryption without Bootstrapping.

Sma�, N. P., & Vercauteren, F. (2010). Fully Homomorphic Encryption with Relatively Small Key
and Ciphe�ext Sizes.

h�ps://github.com/jonaschn/awesome-he?tab=readme-ov-file

h�ps://csrc.nist.gov/Projects/threshold-cryptography

Data Protection in Vi�ual Environments (DPRIVE) Dr. Bryan Jacob

h�ps://iapp.org/news/a/the-latest-in-homomorphic-encryption-a-game-changer-shaping-up/

h�ps://fhe.org/conferences/conference-2024/

h�ps://www.semanticscholar.org/paper/Survey-on-Homomorphic-Encryption-and-Address-of-
New-Alharbi-Zamzami/6468cffa6d7a1fba27d4e813a0a22531757d1d8a

h�ps://en.wikipedia.org/wiki/Homomorphic_encryption

Homomorphic Encryption Standard by Ma�in Albrecht, Melissa Chase, Hao Chen, Jintai Ding,
Shafi Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, Vinod Vaikuntanathan

h�ps://research.ibm.com/blog/federated-learning-homomorphic-encryption

16Homomorphic encryption: Exploring technology
trends and future approach

Author information
Shivani Agarwal

Shivani Agarwal is a Solution Architect and Embedded Security evangelist
working on security architecture in IOT & Embedded products. She has wide
experience in Threat Assessment & Modeling, security controls
implementations and Risk management. She has more than 18 years of
experience in complete SDLC Implementation including Requirement
gathering & Risk Assessment, System Design and Threat Modeling,
development of secure code, testing and secure deployment. She has
worked in various domain including consumer electronics, Medical,
Automotive Industrial etc. She is experienced in developing secure
solutions using PKI Infrastructure, Secure boot, Secure Execution
environment, OS hardening, Network and Communication Security.

Manikandan

Manikandan is a cybersecurity engineer with a strong focus on
cryptographic algorithms, including post-quantum and homomorphic
encryption algorithms. With expe�ise in encryption-decryption, MAC, digital
signature algorithms, Manikandan brings a deep understanding of secure
systems to any project. His hands-on experience in handling various
hardware boards allows him to bring a practical approach to implementing
secure systems.

17Homomorphic encryption: Exploring technology
trends and future approach

HCLTech is a global technology company, home to 222,000+ people across
60 countries, delivering industry-leading capabilities centered around Digital,
Engineering and Cloud powered by a broad po�folio of technology services and
software. The company generated consolidated revenues of $12.3 billion over the
12 months ended December 2022. To learn how we can supercharge progress for
you, visit hcltech.com.

hcltech.com

