
Big Data Analytics In M2M

WHITE PAPER

 Cloud Ready Web Applications

with jHipster

Big Data Analytics In M2M

WHITE PAPER

2 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Table of Contents
Introduction .. 3

Key Architecture Drivers ... 3

What is jHipster? ... 4

Technology behind JHipster .. 4

Creating a jHipster Application ... 4

Client Side Technologies ... 6

Startup Screen ... 8

Server Side Technologies .. 9

Spring Data JPA ... 10

Spring Data REST ... 10

Swagger UI .. 10

Spring Boot .. 11

Spring Boot Actuator ... 12

Logging .. 15

Liquibase ... 15

Spring Cloud .. 15

Mail ... 17

Elasticsearch ... 18

Performance Testing ... 18

Conclusion ... 20

References .. 20

3 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Introduction
Web application technology is continuously evolving and we need to adapt to the “new normal” of

applications and services being cloud ready, distributed, resilient to failure, API-driven, scalable, and

more. This document covers how we can build next generation Java web applications using all the best

practices and state-of-the-art frameworks, while still providing enhanced agility to the developer to

focus on the core business logic of wiring up the entire architecture using the leading Spring Boot +

AngularJS application generator - jHipster. We stumbled upon this in a spring.io blog about a month

back, while trying to understand Spring Boot and how to leverage it beyond a basic sample application

into a real life web application and tried jHipster out, to experience the power of the tooling. The

turnaround time for creating a production ready, secure, customer facing, and distributed web

application has just got shorter.

For this evaluation exercise, a sample application has been generated as per the tutorial provided here.

With the extremely fast pace of new milestone releases and features being added in this project, only

some of the main features are being covered in this document. Do visit the site for the latest updates and

full details of the feature set.

Key Architecture Drivers
To understand what jHipster provides, it is best to first understand what we, in the developer

community, try to achieve when we build modern Java web applications. Some of the key aspects are

highlighted below:

 UI Layer: The UI layer is what makes the first impression to the end user and needs to be easy to

transition from a concept to a working model. It should support features like responsive design,

multi-device support, and fast load time. This requires the usage of technologies like

HTML5/CSS3/Java Script based on the Single Page Application architecture.

 Technology selection for the architecture with high developer productivity.

o There are some great tools for various layers of a web architecture; but, the key challenge is not

only in making the right selection(s), but also in being able to make them work together to

provide high developer productivity

o Deployment of applications in multiple environments from local developer laptops to Cloud

environments like Heroku / AWS / Cloudfoundry, etc.

https://spring.io/blog/2015/02/10/introducing-jhipster
http://projects.spring.io/spring-boot/
http://jhipster.github.io/creating_an_entity.html

4 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

o No vendor lock in: Ability to maintain the code / use Open Source stack. Standards-based

development that is flexible to extend or change parts of the framework without a major re-

write

 Production readiness

o Quoting from the “12 Factor App” of building software as a service apps – it can scale up

without significant changes to tooling, architecture, or development practices

o Secure , RESTful API centric and stateless architecture

o Logging, monitoring, and auditing support with an admin console or dashboard

o Last, but not the least, a strong testing infrastructure for all aspects - UI, services, performance

and scalability

The goals of jHipster is to solve these issues as stated on its website.

- A beautiful front-end, with the latest HTML5/CSS3/JavaScript frameworks

- A robust and high-quality back-end, with the latest Java/Caching/Data access technologies

- All automatically wired up, with security and performance in mind

- And great developer tooling, for maximum productivity

What is jHipster?

The technology behind JHipster

The heart of the code generation for jHipster is a scaffolding tool called yeoman .

The setup requires you to install these workflow components in your developer environment as a pre-

requisite. It also supports a Docker version of the developer environment, with a Dockerfile based on a

Ubuntu image.

Creating a jHipster Application

High level steps for creating a jHipster application are illustrated below. The workflow for each step has

multiple user input steps, which can be referred to, here.

The goal of the tool is to help “Leverage the success and
lessons learnt from several open-source communities to
ensure that the developers use it as intelligently as
possible”.

The Yeoman workflow comprises three types of tools for

improving productivity and satisfaction when building a

web app: the scaffolding tool (yo), the build tool (Grunt,

Gulp, etc.), and the package manager (like Bower and

npm).

http://12factor.net/
http://jhipster.github.io/
http://yeoman.io/
http://jhipster.github.io/installation.html
http://jhipster.github.io/installation.html

5 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Figure 1: jHipster Project Workflow

As part of the evaluation, we created the jHipster application with the following generation options:

 Java 8 – to get Elasticsearch support (only supported for Java 8)

 Elastic Search

 EhCache enabled – L2 Cache for Hibernate 4.x

 Hazelcast based http session clustering

 MySQL database for both development and production (we could choose H2 for dev. as well)

 No Websockets

 Maven build

 Grunt for frontend build

 No Sass compilation (can be used for advanced CSS users)

 Entities generation options

o Author 1..* Book

o Author with link based pagination

o Book with infinite scroll based pagination support

6 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Client Side Technologies

Figure 2: Client Side Technologies

The client side technology stack, as shown above, is the recommended set by many developer

communities. However, the key aspect is making these work together in a seamless manner. Some of

the key highlights include:

 Increased productivity of client-side Java Script application development and testing: jHipster

integrates with BrowserSync , which allows you to have an automatic refresh of all browsers as you

modify your HTML/CSS/JavaScript files. This saves you a lot of time as there is no re-build required

for testing out the UI changes. The ability to test multiple browsers/devices and have the scroll or

click events simultaneously working on all screens is an extremely powerful utility.

 Karma and Phantom JS (headless Web kit) are integrated into the jHipster generated project which

helps test your UI without launching the Java backend.

 The UI layer has AngularJS based internalization and is also generated as part of the project. It uses

the Angular-Translate module for the same.

 Role Based Access: The UI layer has Angular JS directives for ensuring menu and link availability, and

is based on the user context and roles assigned to the user.

Only the ADMIN user role has access to the administration menu.

http://www.browsersync.io/
https://github.com/PascalPrecht/angular-translate

7 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Figure 3: Admin User Access menu

The API level security prevents direct URL access to any of the administrative operations as well.

 Entity related CRUD screens with validation: As entities are added using the jHipster entity

generation workflow, Bootstrap CRUD screens/AngularJS controllers with optional pagination and

search capability are automatically generated. It wires up with the backend REST API calls from the

Spring resource server.

Figure 4: Authors Entity CRUD Screen

8 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Figure 5: Many to One author drop down selection generation

 The Bower based Java script Package Manager helps the developer quit worrying about version

numbers getting entangled in the source code. All client side dependencies are taken care of in the

bower.json file, making it much faster to upgrade a version of the library without affecting the

source code.

Startup Screen

Figure 6: Dev. profile landing page

9 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Server Side Technologies

Figure 7: Server side technologies

The server side technology stack core platform is based on Spring and supports both Java 7 and Java 8.

There are certain features which are generated only for Java 8, like Elasticsearch, and utilize the lambda

functions feature if Java 8 is enabled.

One of the key aspects of designing such a solution is to ensure that security is not an afterthought and

takes care of all layers including the UI. There is a known issue with respect to CSRF protection.

Cross Site Request Forgery (CSRF) is a type of malicious attack that occurs when an end-user is forced to

execute an unwanted action with or without his/her knowledge, on behalf of the attacker, with the

authenticated end user of the application. For example: an email link sent from the attacker posing as a

bank or a commercial website, which will perform a function within the website where the end-user is

authenticated.

Spring Security has a built-in CSRF protection, which ensures that end-users’ data requests are

supported by X-CSRF cookie token, which is set in the first GET request and subsequent requests are

validated against it. Angular JS too has a CSRF protection built in, however the token format expected is

different. The jHipster generated project takes care of this impedance and ensures end-to-end CSRF

protection.

Other key security measures include:

 Cookie Theft protection, which ensures that cookies are refreshed for each user login, thus making

sure that the older session cookies are unusable by attackers.

 Spring Security token based remember-me support.

 Multiple authentication mechanisms, including stateful cookie based and OAuth2

 Role based access is also integrated with the generated UI, as well as API level access via Spring

security annotations.

10 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

As mentioned earlier, JHipster is continuously improving and has a very active community. One of the

recent additions is the MapStruct which helps in the generation of DTOs for the entities; but this works

only with Java 8.

Spring Data JPA

This is a part of the umbrella project of Spring Data, which provides a consistent way of accessing data

repositories such as NoSQL databases, and cloud based data services apart from RDBMS. Spring Data

JPA provides the JPA repositories implementation and significantly reduces the boilerplate code that has

to be written for implementing the DAO layer. The developer can focus on just adding any required

queries and utilizing the ‘out of the box’ features of transaction management, auditing, validation,

pagination, etc.

Spring Data REST

Spring Data REST will help to export the Spring Data Repositories as hypermedia based RESTful services,

and supports a large number of features for discovering and search entity services.

Swagger UI

The generated jHipster project is integrated with Swagger and all the REST APIs exposed by the project

are available as part of the Swagger UI integration, which provides not only an HTML5 compatible API

documentation interface, but also acts as a sandbox environment to test out your APIs.

Figure 8: Spring MVC - Swagger Plugin integration

http://mapstruct.org/
http://projects.spring.io/spring-data/
http://projects.spring.io/spring-data-jpa/#quick-start
http://projects.spring.io/spring-data-jpa/#quick-start
http://projects.spring.io/spring-data-rest/

11 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Figure 9: Swagger UI integration

Spring Boot

One of the core components of the jHipster generated project is that it helps in building production

grade, self-contained, standalone applications or services. Some of the other key features include:

 Support for metrics, health checks, and externalized configuration, making it production ready

 Intelligent auto-configuration of Spring wherever possible, with no-code generation and zero xml

configuration

 Starters or packaged dependencies, which are dramatically simplified for your state-of-the-art, Java

and Server development

http://projects.spring.io/spring-boot/

12 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Figure 10: Sample Spring Boot Starters added to the generated project

Spring Boot Actuator

Application health metrics is a critical aspect of any distributed web application and integration with

Spring Boot Actuator in the generated project automatically exposing two endpoints for metrics

collection:

1) /health – to check if a service is up or not

2) /metrics – to read the application metrics

There is an ‘out of the box’ integration provided with Graphite, which provides a very convenient

administrative interface.

Figure 11: Spring Boot Actuator integration

Apart from the default metrics and health checks that are provided, this integration can easily be

extended to provide additional custom metrics that you would want to track as part of the application.

13 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Figure 12: Health API UI screen

Figure 13: Metrics API UI screen

14 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Figure 14: Metrics API UI screen (cont.).

Spring Boot Actuator Audit Framework is also integrated in the project, which helps in publishing Spring

security events like ‘authentication success’ or ‘failure’.

Figure 15: Audit Log UI Screen

15 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Logging

Figure 16: Log UI screen with log level change functionality

Figure 17: Log API PUT method

Liquibase

Liquibase integration is easily extendable to bootstrap .csv data into data entity tables. In the sample

application created, the author and book tables were loaded with .csv data by extending the Liquibase

configuration to include a changeset for the data upload.

Figure 18: Liquibase bootstrapping

Since the Elasticsearch index creation in the project generator is bound to the CRUD REST APIs of the

entities, these .csv based bootstrap entries are not picked up. However, you can easily expose a secure

admin API to re-index the entities, which are automatically available then in the Swagger UI

administrative interface as well.

16 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Spring Cloud

Spring Cloud is a toolbox for building distributed Cloud applications and Microservices using Spring. It

brings together a set of design patterns and use cases you will often encounter in building such systems.

These include the modules below:

 Configuration Server – Ability to externalize and distribute configuration settings

 Configuration Server Client – Bring server configuration in Spring context

 Integrate with NetFlix Open Source projects

o Eureka – Service Discovery (Registry and Lookup)

o Fiegn – Http Client framework

o Hystrix – for resilience and monitoring (Provides a Circuit Breaker pattern implementation)

o Ribbon – Inter process communication

o Zuul – Edge Service (Can be used to implement the API Gateway pattern)

o Turbine – SSE Stream Aggregator

 AWS adapters for Spring Beans

 Spring Cloud Bus – Light weight message broker

 Connectors – They enable APIs to connect and bind to services provided by Cloud infrastructure

providers like Cloudfoundry, Heroku, and Openshift. This enables developers to build their

applications to not only run locally, but to also automatically bind to vendor-specific services like

databases, without any issues.

 For a detailed list, please refer to Spring io documentation on Spring cloud.

From the jHipster perspective, the configuration server client and cloud connectors are pre-integrated

into the generated application, which lets you deploy seamlessly to a cloud environment like Heroku,

with minimal effort.

Figure 19: Spring Cloud dependencies

http://cloud.spring.io/

17 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Figure 20: Spring Cloud Configuration UI

For deploying to Cloud environments, there are sub-generators available for Cloud vendors based on

Spring Cloud, which help you bind to the services of the Cloud provider as well as push your application

to the Cloud.

Mail

Mail integration uses Spring Boot starter for mail and wires up a JavaMailSender configuration bean for

you. All that is required is to set the email server configuration in the application.yml file.

For testing purposes, there is a very useful tool which provides you with the ability to use a dummy

SMTP server called mailtrap.io. Here, a free service plan was used to test the user activation and

password reset functionality, which comes built-in.

The email server configuration in application.yml would look something like this:

Figure 21: Application.yml mail configuration

https://mailtrap.io/

18 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Figure 22: mailtrap.io Dummy STMP Server

Elasticsearch

Elasticsearch support is via a Spring Data Elasticsearch starter module, which exposes Elasticsearch as a

Data Repository. The fact that Java 8 is required by jHipster for Elasticsearch support is due to the fact

that they use Java 8 Streams as part of the implementation.

One of the new features of Java 8 are Stream operations, which operate on a source data

structure (collections / arrays), and produce pipelined data that can be operated upon.

Figure 23: Java 8 StreamSupport APIs for Elasticsearch implementation

Given above is a snippet from the Elasticsearch REST API, where StreamSupport is used to collect the

data from the author search repository and return a List.

Performance Testing

Performance testing integration into a project is something we generally delay to a later stage of the

project, and start working on this once we have the basic build infrastructure in place. jHipster helps us

here by generating a Gatling integration as part of the project. There are test cases automatically added

for the entities you add using the jHipster entity generation workflow.

http://en.wikipedia.org/wiki/Gatling_(software)

19 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Gatling is an open source stress testing framework built using Scala, Akka, and Netty. The key features

being that it is built for high performance stress tests and come with extremely powerful visualization

based on HighCharts.

Figure 24: Sample output from Author API Test

20 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

The most common stress and load testing tool we are familiar with is JMeter. Apparently, a benchmark

exercise done by flood.io (which is a distributed load testing SaaS platform that supports both Gatling

and JMeter) concluded that for up to 10K users, there is not much to choose between the two; but, the

true value of Gatling comes across for extremely high number of users ~20K where it performs better

than JMeter.

High Productivity Setup

One of the key productivity gains with jHipster is the seamless setup of the database and Elasticsearch

environments for development and production.

 If you use an SQL database, JHipster will launch an in-memory H2 instance in order to use a

temporary database for its integration tests. Liquibase will be run automatically and will generate

the database schema.

 If you use Cassandra, JHipster will launch an in-memory Cassandra instance using CassandraUnit.

 If you use MongoDB, as this is not a Java-based database, you will need to run a specific MongoDB

instance on your local machine.

 If you use Elasticsearch, JHipster will launch an in-memory Elasticsearch instance using Spring Data

Elasticsearch.

 It also provides the option of a quick launch of the spring boot application in dev mode, bypassing

the Liquibase, Swagger, and admin services using UnderTow instead of Tomcat. The launch is

executed in under 10 seconds (in fact the site mentions 4-6 seconds). This is a high productivity

option of developers wanting to focus on rolling out a new feature quickly.

Conclusion
Though the jHipster project is just about 18 months old, it has an ever growing list of contributors and

community members. The choice of technology stacks, with seamless integration, and the detailed level

of features that get packaged in the generated project, make it a very compelling option for building

next generation distributed web applications. The ability to have all this, setup in a matter of a few

generation workflow steps, helps reduce the turnaround time to produce production-ready web

applications. Though the complete application is packaged into one generated project, this can easily be

split into different service layers, to form the base of a Microservices based architecture.

References

 JHipster Site http://jhipster.github.io

 Spring Boot http://projects.spring.io/spring-boot/

 Spring Data http://projects.spring.io/spring-data/

 Spring Cloud http://cloud.spring.io/

 Mail Trap https://mailtrap.io/

https://blog.flood.io/stress-testing-jmeter-and-gatling/
https://blog.flood.io/stress-testing-jmeter-and-gatling/
https://github.com/jsevellec/cassandra-unit
http://undertow.io/
http://jhipster.github.io/profiles.html
http://jhipster.github.io/
http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-data/
http://cloud.spring.io/
https://mailtrap.io/

21 | © 2015, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved.

Author Info

Tarun Kumar Sukhu

Tarun is Deputy General Manager at HCL and has over 19 years of experience in Product Engineering

and Consultancy Services, dealing with Data Management Platforms, Cloud, Platform Migration, and

Digital e-Commerce.

Hello, I'm from HCL's Engineering and R&D Services. We enable technology led organizations to go to market with innovative
products and solutions. We partner with our customers in building world class products and creating associated solution
delivery ecosystems to help bring market leadership. We develop engineering products, solutions and platforms across
Aerospace and Defense, Automotive, Consumer Electronics, Software, Online, Industrial Manufacturing, Medical Devices,
Networking & Telecom, Office Automation, Semiconductor and Servers & Storage for our customers.

For more details contact: ers.info@hcl.com
Follow us on Twitter: http://twitter.com/hclers & LinkedIn: http://lnkd.in/bt8hDXM
View our blog-site: http://www.hcltech.com/blogs/engineering-and-rd-services
Visit our website: http://www.hcltech.com/engineering-rd-services

http://twitter.com/hclers
https://www.linkedin.com/company/3638581/redirect?url=http%3A%2F%2Flnkd%2Ein%2Fbt8hDXM&urlhash=qunp&actionToken=isSponsored%3Dfalse%26distanceFromViewer%3D-1%26model%3Dnull%26aggregationType%3Dnone%26isPublic%3Dtrue%26verbType%3Dlinkedin%3Ashare%26activityId%3Dactivity%3A5903023947821113344%26contextId%3DBdacOkcOiBNwKhzIIisAAA%3D%3D%26isDigested%3Dfalse%26isFolloweeOfPoster%3Dfalse%26actorType%3Dlinkedin%3Acompany%26pageKey%3Dbiz_share_uscp_activity%26feedPosition%3D1%26actorId%3Dcompany%3A3638581%26objectId%3Darticle%3A8930724516703538922%26rowPosition%3D1%26objectType%3Dlinkedin%3Aarticle%26moduleKey%3Dcompany_feed&goback=%2Ebzo_*1_*1_*1_*1_*1_*1_*1_hcl*5technologies*5*5*5engineering*5and*5r%26d*5services
http://www.hcltech.com/blogs/engineering-and-rd-services
http://www.hcltech.com/engineering-rd-services

